論文の概要: Learning to Ask Medical Questions using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2004.00994v2
- Date: Mon, 25 May 2020 08:13:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 23:53:37.197795
- Title: Learning to Ask Medical Questions using Reinforcement Learning
- Title(参考訳): 強化学習を用いた医学的質問の学習
- Authors: Uri Shaham, Tom Zahavy, Cesar Caraballo, Shiwani Mahajan, Daisy
Massey, Harlan Krumholz
- Abstract要約: 強化学習エージェントは、アンマストすべき特定の特徴を反復的に選択し、十分な自信のある結果を予測する。
提案手法の重要な構成要素は、選択した特徴から得られる結果を予測し、報酬関数をパラメータ化するように訓練された推測ネットワークである。
本手法を全国調査データセットに適用することにより,少数の入力特徴に基づいて予測を行う必要のある場合,高いベースラインを達成できるだけでなく,解釈性も高いことを示す。
- 参考スコア(独自算出の注目度): 9.376814468000955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel reinforcement learning-based approach for adaptive and
iterative feature selection. Given a masked vector of input features, a
reinforcement learning agent iteratively selects certain features to be
unmasked, and uses them to predict an outcome when it is sufficiently
confident. The algorithm makes use of a novel environment setting,
corresponding to a non-stationary Markov Decision Process. A key component of
our approach is a guesser network, trained to predict the outcome from the
selected features and parametrizing the reward function. Applying our method to
a national survey dataset, we show that it not only outperforms strong
baselines when requiring the prediction to be made based on a small number of
input features, but is also highly more interpretable. Our code is publicly
available at \url{https://github.com/ushaham/adaptiveFS}.
- Abstract(参考訳): 適応的かつ反復的な特徴選択のための新しい強化学習に基づくアプローチを提案する。
入力特徴のマスキングベクトルが与えられると、強化学習エージェントは、未マスクの特定の特徴を反復的に選択し、十分な自信をもって結果を予測する。
このアルゴリズムは、非定常マルコフ決定プロセスに対応する、新しい環境設定を利用する。
我々のアプローチの重要なコンポーネントは推測ネットワークで、選択した特徴から結果を予測するように訓練され、報酬関数をパラメータ化します。
本手法を全国調査データセットに適用することにより,少数の入力特徴に基づいて予測を行う必要のある場合,高いベースラインを達成できるだけでなく,解釈性も高いことを示す。
私たちのコードは \url{https://github.com/ushaham/adaptiveFS} で公開されています。
関連論文リスト
- Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
我々は、OPEのサンプル効率を人間の好みで研究し、その統計的保証を確立する。
ReLUネットワークのサイズを適切に選択することにより、マルコフ決定過程において任意の低次元多様体構造を活用できることが示される。
論文 参考訳(メタデータ) (2023-10-16T16:27:06Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
低リソーステキスト分類のための新しい説明可能なアクティブラーニングフレームワーク(XAL)を提案する。
XALは分類器に対して、推論を正当化し、合理的な説明ができないラベルのないデータを掘り下げることを推奨している。
6つのデータセットの実験では、XALは9つの強いベースラインに対して一貫した改善を達成している。
論文 参考訳(メタデータ) (2023-10-09T08:07:04Z) - Deep Feature Selection Using a Novel Complementary Feature Mask [5.904240881373805]
重要度が低い機能を活用することで、機能選択に対処します。
本稿では,新しい補完機能マスクに基づく特徴選択フレームワークを提案する。
提案手法は汎用的であり,既存のディープラーニングに基づく特徴選択手法に容易に組み込むことができる。
論文 参考訳(メタデータ) (2022-09-25T18:03:30Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - Using Sum-Product Networks to Assess Uncertainty in Deep Active Learning [3.7507283158673212]
本稿では,畳み込みニューラルネットワーク(CNN)を用いた深層能動学習における不確かさの計算方法を提案する。
CNN が抽出した特徴表現を Sum-Product Network (SPN) のトレーニングデータとして利用する。
論文 参考訳(メタデータ) (2022-06-20T14:28:19Z) - Automated Algorithm Selection: from Feature-Based to Feature-Free
Approaches [0.5801044612920815]
本稿では,データ中に暗黙的なシーケンシャル情報がカプセル化されている最適化に適用可能な,アルゴリズム選択のための新しい手法を提案する。
我々は、よく知られた4つのドメインから選択して、オンラインビンパッキングのパッキングを予測するために、2種類のリカレントニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2022-03-24T23:59:50Z) - Fine-Grained Neural Network Explanation by Identifying Input Features
with Predictive Information [53.28701922632817]
入力領域における予測情報を用いて特徴を識別する手法を提案する。
我々の手法の中核となる考え方は、予測潜在機能に関連する入力機能のみを通過させる入力のボトルネックを活用することである。
論文 参考訳(メタデータ) (2021-10-04T14:13:42Z) - A concise method for feature selection via normalized frequencies [0.0]
本稿では,普遍的特徴選択のための簡潔な手法を提案する。
提案手法は, フィルタ法とラッパー法を融合して行う。
評価結果から,提案手法は,精度,精度,リコール,Fスコア,AUCの点で,いくつかの最先端技術に優れた性能を示した。
論文 参考訳(メタデータ) (2021-06-10T15:29:54Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
数ショット分類のための高速な最適化に基づくメタラーニング手法を提案する。
我々の戦略はメタ学習において学習すべき基礎学習者の目的の重要な側面を可能にする。
我々は、我々のアプローチの速度と効果を実証し、総合的な実験分析を行う。
論文 参考訳(メタデータ) (2020-10-01T15:59:31Z) - SWAG: A Wrapper Method for Sparse Learning [0.13854111346209866]
本稿では,低データ収集とストレージコストを伴って,スパース学習者のライブラリを見つける手順を提案する。
この新しい手法は、容易に解釈できる低次元の属性ネットワークを提供する。
我々はこのアルゴリズムを "Sparse Wrapper AlGorithm" (SWAG) と呼ぶ。
論文 参考訳(メタデータ) (2020-06-23T08:53:41Z) - Visual Question Answering with Prior Class Semantics [50.845003775809836]
候補解のセマンティクスに関連する追加情報を利用する方法を示す。
セマンティック空間における回帰目標を用いて解答予測プロセスを拡張する。
提案手法は,様々な質問タイプに対して,一貫性と精度の向上をもたらす。
論文 参考訳(メタデータ) (2020-05-04T02:46:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。