論文の概要: Model-based occlusion disentanglement for image-to-image translation
- arxiv url: http://arxiv.org/abs/2004.01071v2
- Date: Mon, 20 Jul 2020 09:27:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 10:03:28.697743
- Title: Model-based occlusion disentanglement for image-to-image translation
- Title(参考訳): 画像から画像への変換のためのモデルベースオクルージョン・ディアングルメント
- Authors: Fabio Pizzati, Pietro Cerri, Raoul de Charette
- Abstract要約: 教師なしモデルに基づく学習は、シーンとオクルージョンを混乱させます。
複数のデータセット上で、質的かつ定量的に最先端の翻訳を生成する。
- 参考スコア(独自算出の注目度): 26.36897056828784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image-to-image translation is affected by entanglement phenomena, which may
occur in case of target data encompassing occlusions such as raindrops, dirt,
etc. Our unsupervised model-based learning disentangles scene and occlusions,
while benefiting from an adversarial pipeline to regress physical parameters of
the occlusion model. The experiments demonstrate our method is able to handle
varying types of occlusions and generate highly realistic translations,
qualitatively and quantitatively outperforming the state-of-the-art on multiple
datasets.
- Abstract(参考訳): 画像から画像への変換は、雨滴や汚れなどの咬合を包含するターゲットデータの場合、絡み合い現象によって影響を受ける。
教師なしモデルに基づく学習は, 咬合モデルの物理的パラメータを後退させる逆パイプラインの利点を享受しながら, 情景と咬合の対立を解消する。
実験により,本手法は様々な種類のオクルージョンを処理し,質的かつ定量的に複数のデータセット上で最先端の精度を達成できることを示す。
関連論文リスト
- Transparency Distortion Robustness for SOTA Image Segmentation Tasks [4.1119273264193685]
本研究では,空間的に異なる歪みを持つ既存のデータセットを合成的に拡張する手法を提案する。
実験により, これらの歪み効果は, 最先端セグメンテーションモデルの性能を低下させることが示された。
論文 参考訳(メタデータ) (2024-05-21T15:30:25Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANRAC(RANdom RAy Consensus)は、一貫性のないデータの影響を排除するための効率的な手法である。
我々はRANSACパラダイムのファジィ適応を定式化し、大規模モデルへの適用を可能にした。
その結果, 新規な視点合成のための最先端のロバストな手法と比較して, 顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-12-15T13:33:09Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPM) は近年,条件付きおよび非条件付き画像生成において顕著な成果を上げている。
我々はGradPaintを紹介し、グローバルな一貫性のあるイメージに向けて世代を操る。
我々は、様々なデータセットで訓練された拡散モデルによく適応し、現在最先端の教師付きおよび教師なしの手法を改善している。
論文 参考訳(メタデータ) (2023-09-18T09:36:24Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
この研究は、拡散モデルと物理ベースの露光モデルとをシームレスに統合することで、この問題に対処する。
提案手法は,バニラ拡散モデルと比較して性能が大幅に向上し,推論時間を短縮する。
提案するフレームワークは、実際のペア付きデータセット、SOTAノイズモデル、および異なるバックボーンネットワークの両方で動作する。
論文 参考訳(メタデータ) (2023-07-15T04:48:35Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - Robustness via Uncertainty-aware Cycle Consistency [44.34422859532988]
非ペア画像-画像間の変換とは、対応する画像対を使わずに画像間マッピングを学習することを指す。
既存の手法は、外乱や予測の不確実性にロバスト性を明示的にモデル化することなく決定論的マッピングを学習する。
不確実性を考慮した一般化適応サイクル一貫性(UGAC)に基づく新しい確率的手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T15:33:21Z) - Uncertainty-aware Generalized Adaptive CycleGAN [44.34422859532988]
unpaired image-to-image translationは、教師なしの方法で画像ドメイン間のマッピングを学ぶことを指す。
既存の手法はしばしば、外れ値への堅牢性や予測不確実性を明示的にモデル化せずに決定論的マッピングを学習する。
Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC) という新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T15:22:35Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
本稿では、異なるレンズからの同一シーンの歪み画像の補正結果が同一であるべきという重要な知見に基づいて、新しい自己監督画像補正法を提案する。
我々は、歪みパラメータから修正画像を生成し、再歪み画像を生成するために、微分可能なワープモジュールを利用する。
本手法は,教師付きベースライン法や代表的最先端手法と同等あるいはそれ以上の性能を実現する。
論文 参考訳(メタデータ) (2020-11-30T08:23:25Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
本研究では,セマンティックデータ拡張法 (SDA) を提案する。
また,適応的セマンティックデータ拡張 (ASDA) を提案する。
最先端の結果は、挑戦的なベンチマークで得られます。
論文 参考訳(メタデータ) (2020-08-03T07:56:04Z) - Learning to Manipulate Individual Objects in an Image [71.55005356240761]
本稿では,独立性および局所性を有する潜在因子を用いた生成モデルを学習する手法について述べる。
これは、潜伏変数の摂動が、オブジェクトに対応する合成画像の局所領域のみに影響を与えることを意味する。
他の教師なし生成モデルとは異なり、オブジェクトレベルのアノテーションを必要とせず、オブジェクト中心の操作を可能にする。
論文 参考訳(メタデータ) (2020-04-11T21:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。