Model-based occlusion disentanglement for image-to-image translation
- URL: http://arxiv.org/abs/2004.01071v2
- Date: Mon, 20 Jul 2020 09:27:54 GMT
- Title: Model-based occlusion disentanglement for image-to-image translation
- Authors: Fabio Pizzati, Pietro Cerri, Raoul de Charette
- Abstract summary: Our unsupervised model-based learning disentangles scene and occlusions.
We generate highly realistic translations, qualitatively and quantitatively outperforming the state-of-the-art on multiple datasets.
- Score: 26.36897056828784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image-to-image translation is affected by entanglement phenomena, which may
occur in case of target data encompassing occlusions such as raindrops, dirt,
etc. Our unsupervised model-based learning disentangles scene and occlusions,
while benefiting from an adversarial pipeline to regress physical parameters of
the occlusion model. The experiments demonstrate our method is able to handle
varying types of occlusions and generate highly realistic translations,
qualitatively and quantitatively outperforming the state-of-the-art on multiple
datasets.
Related papers
- Transparency Distortion Robustness for SOTA Image Segmentation Tasks [4.1119273264193685]
We propose a method to synthetically augment existing datasets with spatially varying distortions.
Our experiments show, that these distortion effects degrade the performance of state-of-the-art segmentation models.
arXiv Detail & Related papers (2024-05-21T15:30:25Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
We show how denoising diffusion models can be applied for high-fidelity person image synthesis.
Our results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios.
arXiv Detail & Related papers (2022-11-22T18:59:50Z) - Robustness via Uncertainty-aware Cycle Consistency [44.34422859532988]
Unpaired image-to-image translation refers to learning inter-image-domain mapping without corresponding image pairs.
Existing methods learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty.
We propose a novel probabilistic method based on Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC)
arXiv Detail & Related papers (2021-10-24T15:33:21Z) - Uncertainty-aware Generalized Adaptive CycleGAN [44.34422859532988]
Unpaired image-to-image translation refers to learning inter-image-domain mapping in an unsupervised manner.
Existing methods often learn deterministic mappings without explicitly modelling the robustness to outliers or predictive uncertainty.
We propose a novel probabilistic method called Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC)
arXiv Detail & Related papers (2021-02-23T15:22:35Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
We propose Semantic Data Augmentation (SDA), a method that augments images by pasting segmented body parts with various semantic granularity.
We also propose Adversarial Semantic Data Augmentation (ASDA), which exploits a generative network to dynamiclly predict tailored pasting configuration.
State-of-the-art results are achieved on challenging benchmarks.
arXiv Detail & Related papers (2020-08-03T07:56:04Z) - Learning to Manipulate Individual Objects in an Image [71.55005356240761]
We describe a method to train a generative model with latent factors that are independent and localized.
This means that perturbing the latent variables affects only local regions of the synthesized image, corresponding to objects.
Unlike other unsupervised generative models, ours enables object-centric manipulation, without requiring object-level annotations.
arXiv Detail & Related papers (2020-04-11T21:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.