ExposureDiffusion: Learning to Expose for Low-light Image Enhancement
- URL: http://arxiv.org/abs/2307.07710v2
- Date: Tue, 15 Aug 2023 08:23:21 GMT
- Title: ExposureDiffusion: Learning to Expose for Low-light Image Enhancement
- Authors: Yufei Wang, Yi Yu, Wenhan Yang, Lanqing Guo, Lap-Pui Chau, Alex C.
Kot, Bihan Wen
- Abstract summary: This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
- Score: 87.08496758469835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous raw image-based low-light image enhancement methods predominantly
relied on feed-forward neural networks to learn deterministic mappings from
low-light to normally-exposed images. However, they failed to capture critical
distribution information, leading to visually undesirable results. This work
addresses the issue by seamlessly integrating a diffusion model with a
physics-based exposure model. Different from a vanilla diffusion model that has
to perform Gaussian denoising, with the injected physics-based exposure model,
our restoration process can directly start from a noisy image instead of pure
noise. As such, our method obtains significantly improved performance and
reduced inference time compared with vanilla diffusion models. To make full use
of the advantages of different intermediate steps, we further propose an
adaptive residual layer that effectively screens out the side-effect in the
iterative refinement when the intermediate results have been already
well-exposed. The proposed framework can work with both real-paired datasets,
SOTA noise models, and different backbone networks. Note that, the proposed
framework is compatible with real-paired datasets, real/synthetic noise models,
and different backbone networks. We evaluate the proposed method on various
public benchmarks, achieving promising results with consistent improvements
using different exposure models and backbones. Besides, the proposed method
achieves better generalization capacity for unseen amplifying ratios and better
performance than a larger feedforward neural model when few parameters are
adopted.
Related papers
- Learning Diffusion Model from Noisy Measurement using Principled Expectation-Maximization Method [9.173055778539641]
We propose a principled expectation-maximization (EM) framework that iteratively learns diffusion models from noisy data with arbitrary corruption types.
Our framework employs a plug-and-play Monte Carlo method to accurately estimate clean images from noisy measurements, followed by training the diffusion model using the reconstructed images.
arXiv Detail & Related papers (2024-10-15T03:54:59Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
This paper proposes DiffPIR, which integrates the traditional plug-and-play method into the diffusion sampling framework.
Compared to plug-and-play IR methods that rely on discriminative Gaussian denoisers, DiffPIR is expected to inherit the generative ability of diffusion models.
arXiv Detail & Related papers (2023-05-15T20:24:38Z) - Real-World Denoising via Diffusion Model [14.722529440511446]
Real-world image denoising aims to recover clean images from noisy images captured in natural environments.
diffusion models have achieved very promising results in the field of image generation, outperforming previous generation models.
This paper proposes a novel general denoising diffusion model that can be used for real-world image denoising.
arXiv Detail & Related papers (2023-05-08T04:48:03Z) - Retinex Image Enhancement Based on Sequential Decomposition With a
Plug-and-Play Framework [16.579397398441102]
We design a plug-and-play framework based on the Retinex theory for simultaneously image enhancement and noise removal.
Our framework outcompetes the state-of-the-art methods in both image enhancement and denoising.
arXiv Detail & Related papers (2022-10-11T13:29:10Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.