論文の概要: Multi-agent Reinforcement Learning for Networked System Control
- arxiv url: http://arxiv.org/abs/2004.01339v2
- Date: Fri, 24 Apr 2020 01:54:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-17 03:52:47.835703
- Title: Multi-agent Reinforcement Learning for Networked System Control
- Title(参考訳): ネットワーク制御のためのマルチエージェント強化学習
- Authors: Tianshu Chu, Sandeep Chinchali, Sachin Katti
- Abstract要約: 本稿では,ネットワークシステム制御におけるマルチエージェント強化学習(MARL)について考察する。
我々は,NMARLにおける情報損失と非定常性を低減するため,NeurCommと呼ばれる新しい通信プロトコルを提案する。
NeurCommは学習効率と制御性能の両方で既存の通信プロトコルより優れている。
- 参考スコア(独自算出の注目度): 6.89105475513757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers multi-agent reinforcement learning (MARL) in networked
system control. Specifically, each agent learns a decentralized control policy
based on local observations and messages from connected neighbors. We formulate
such a networked MARL (NMARL) problem as a spatiotemporal Markov decision
process and introduce a spatial discount factor to stabilize the training of
each local agent. Further, we propose a new differentiable communication
protocol, called NeurComm, to reduce information loss and non-stationarity in
NMARL. Based on experiments in realistic NMARL scenarios of adaptive traffic
signal control and cooperative adaptive cruise control, an appropriate spatial
discount factor effectively enhances the learning curves of non-communicative
MARL algorithms, while NeurComm outperforms existing communication protocols in
both learning efficiency and control performance.
- Abstract(参考訳): 本稿では,ネットワークシステム制御におけるマルチエージェント強化学習(MARL)について考察する。
具体的には、各エージェントは、接続された隣人からのローカル観測とメッセージに基づいて、分散制御ポリシーを学習する。
このようなネットワーク型MARL(NMARL)問題を時空間マルコフ決定プロセスとして定式化し,各局所エージェントのトレーニングを安定させるために空間的割引係数を導入する。
さらに,NMARLにおける情報損失と非定常性を低減するため,NeurCommと呼ばれる新しい通信プロトコルを提案する。
適応的交通信号制御と協調適応クルーズ制御の現実的なnmarlシナリオの実験に基づき、適切な空間的割引係数は非共用的marlアルゴリズムの学習曲線を効果的に向上させ、neurcommは学習効率と制御性能の両方において既存の通信プロトコルを上回る。
関連論文リスト
- Learning Decentralized Traffic Signal Controllers with Multi-Agent Graph
Reinforcement Learning [42.175067773481416]
我々は,空間的時間的相関を捉えるために,環境観測性を改善した新しい分散制御アーキテクチャを設計する。
具体的には,道路ネットワークに収集された非構造データから相関関連情報を抽出するトポロジ対応情報集約戦略を開発する。
拡散畳み込みモジュールが開発され、新しいMARLアルゴリズムが作成され、エージェントにグラフ学習の能力を与える。
論文 参考訳(メタデータ) (2023-11-07T06:43:15Z) - Combat Urban Congestion via Collaboration: Heterogeneous GNN-based MARL
for Coordinated Platooning and Traffic Signal Control [16.762073265205565]
本稿では、異種グラフ多エージェント強化学習と交通理論に基づいて、これらの課題に対処するための革新的な解決策を提案する。
提案手法は,1)小隊と信号制御を個別の強化学習エージェントとして設計し,各エージェント間のシームレスな情報交換を容易にするため,多エージェント強化学習にグラフニューラルネットワークを組み込んだ協調設計を行う。
論文 参考訳(メタデータ) (2023-10-17T02:46:04Z) - Multi-Agent Reinforcement Learning Based on Representational
Communication for Large-Scale Traffic Signal Control [13.844458247041711]
交通信号制御(TSC)は、インテリジェント交通システムにおいて難しい問題である。
大規模TSCのための通信ベースのMARLフレームワークを提案する。
私たちのフレームワークでは、各エージェントがメッセージのどの部分を誰に"送信"するかを指示する通信ポリシーを学習することができます。
論文 参考訳(メタデータ) (2023-10-03T21:06:51Z) - Perimeter Control with Heterogeneous Metering Rates for Cordon Signals: A Physics-Regularized Multi-Agent Reinforcement Learning Approach [12.86346901414289]
過飽和環境下での都市道路網の制御に対処するための周辺制御(PC)戦略が提案されている。
本稿では,MARL(Multi-Agent Reinforcement Learning)に基づく交通信号制御フレームワークを活用し,PC問題を分解する。
MARLフレームワークの物理正則化手法は,分散コードン信号制御装置がグローバルネットワークの状態を認識していることを確実にするために提案される。
論文 参考訳(メタデータ) (2023-08-24T13:51:16Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
本稿では, 正確な並列化可能なエミュレーション環境を利用して, 戦術ネットワークの環境を再現するRLフレームワークを提案する。
衛星通信(SATCOM)とUHFワイドバンド(UHF)の無線リンク間のボトルネックリンク遷移を再現した条件下で、MARLINエージェントを訓練することにより、我々のRL学習フレームワークを評価する。
論文 参考訳(メタデータ) (2023-06-27T16:15:15Z) - Depthwise Convolution for Multi-Agent Communication with Enhanced
Mean-Field Approximation [9.854975702211165]
本稿では,MARL(Multi-agent RL)課題に取り組むための,局所的なコミュニケーション学習に基づく新しい手法を提案する。
まず,局所的な関係を効率的に抽出する深層的畳み込み機能を利用する新しい通信プロトコルを設計する。
第2に,エージェント相互作用の規模を減らすために,平均場近似を導入する。
論文 参考訳(メタデータ) (2022-03-06T07:42:43Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
本稿では,マルチアクセスエッジコンピューティングサーバにおいて,複数のフェデレーション付き学習サービスの新たなモデルについて検討する。
共同資源最適化とハイパーラーニング率制御の問題,すなわちMS-FEDLを提案する。
シミュレーションの結果,提案アルゴリズムの収束性能を実証した。
論文 参考訳(メタデータ) (2020-11-25T01:29:41Z) - Communication Efficient Distributed Learning with Censored, Quantized,
and Generalized Group ADMM [52.12831959365598]
本稿では,相互接続作業者のネットワーク上で定義されたコンセンサス最適化問題を解決するための,コミュニケーション効率のよい分散機械学習フレームワークを提案する。
提案アルゴリズムであるCensored and Quantized Generalized GADMMは、GADMM(Group Alternating Direction Method of Multipliers)の労働者グループ化と分散学習のアイデアを活用する。
CQ-GGADMMは通信ラウンド数で高い通信効率を示し、精度と収束速度を損なうことなくエネルギー消費を伝達する。
論文 参考訳(メタデータ) (2020-09-14T14:18:19Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
機械学習(ML)は、第5世代(5G)通信システムなどのための有望なイネーブルである。
本稿では、関連するコミュニケーションとMLの原則を概観し、選択したユースケースでコミュニケーション効率と分散学習フレームワークを提示することを目的とする。
論文 参考訳(メタデータ) (2020-08-06T12:37:14Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
本研究では,マルチエージェント強化学習(MARL)環境下での大規模マルチエージェント通信機構について検討する。
本稿では、より柔軟で効率的な通信トポロジを用いて、LSC(Learning Structured Communication)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-11T07:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。