Neural Architecture Generator Optimization
- URL: http://arxiv.org/abs/2004.01395v3
- Date: Sat, 2 Jan 2021 16:28:40 GMT
- Title: Neural Architecture Generator Optimization
- Authors: Binxin Ru, Pedro Esperanca, Fabio Carlucci
- Abstract summary: We are first to investigate casting NAS as a problem of finding the optimal network generator.
We propose a new, hierarchical and graph-based search space capable of representing an extremely large variety of network types.
- Score: 9.082931889304723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Architecture Search (NAS) was first proposed to achieve
state-of-the-art performance through the discovery of new architecture
patterns, without human intervention. An over-reliance on expert knowledge in
the search space design has however led to increased performance (local optima)
without significant architectural breakthroughs, thus preventing truly novel
solutions from being reached. In this work we 1) are the first to investigate
casting NAS as a problem of finding the optimal network generator and 2) we
propose a new, hierarchical and graph-based search space capable of
representing an extremely large variety of network types, yet only requiring
few continuous hyper-parameters. This greatly reduces the dimensionality of the
problem, enabling the effective use of Bayesian Optimisation as a search
strategy. At the same time, we expand the range of valid architectures,
motivating a multi-objective learning approach. We demonstrate the
effectiveness of this strategy on six benchmark datasets and show that our
search space generates extremely lightweight yet highly competitive models.
Related papers
- OStr-DARTS: Differentiable Neural Architecture Search based on Operation Strength [70.76342136866413]
Differentiable architecture search (DARTS) has emerged as a promising technique for effective neural architecture search.
DARTS suffers from the well-known degeneration issue which can lead to deteriorating architectures.
We propose a novel criterion based on operation strength that estimates the importance of an operation by its effect on the final loss.
arXiv Detail & Related papers (2024-09-22T13:16:07Z) - POPNASv2: An Efficient Multi-Objective Neural Architecture Search
Technique [7.497722345725035]
This paper proposes a new version of the Pareto-optimal Progressive Neural Architecture Search, called POPNASv2.
Our approach enhances its first version and improves its performance.
Our efforts allow POPNASv2 to achieve PNAS-like performance with an average 4x factor search time speed-up.
arXiv Detail & Related papers (2022-10-06T14:51:54Z) - Pruning-as-Search: Efficient Neural Architecture Search via Channel
Pruning and Structural Reparameterization [50.50023451369742]
Pruning-as-Search (PaS) is an end-to-end channel pruning method to search out desired sub-network automatically and efficiently.
Our proposed architecture outperforms prior arts by around $1.0%$ top-1 accuracy on ImageNet-1000 classification task.
arXiv Detail & Related papers (2022-06-02T17:58:54Z) - Learning Where To Look -- Generative NAS is Surprisingly Efficient [11.83842808044211]
We propose a generative model, paired with a surrogate predictor, that iteratively learns to generate samples from increasingly promising latent subspaces.
This approach leads to very effective and efficient architecture search, while keeping the query amount low.
arXiv Detail & Related papers (2022-03-16T16:27:11Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
Differentiable ARchiTecture Search (DARTS) has recently become the mainstream of neural architecture search (NAS)
We tackle the hypergradient computation in DARTS based on the implicit function theorem.
We show that the architecture optimisation with the proposed method, named iDARTS, is expected to converge to a stationary point.
arXiv Detail & Related papers (2021-06-21T00:44:11Z) - AutoSpace: Neural Architecture Search with Less Human Interference [84.42680793945007]
Current neural architecture search (NAS) algorithms still require expert knowledge and effort to design a search space for network construction.
We propose a novel differentiable evolutionary framework named AutoSpace, which evolves the search space to an optimal one.
With the learned search space, the performance of recent NAS algorithms can be improved significantly compared with using previously manually designed spaces.
arXiv Detail & Related papers (2021-03-22T13:28:56Z) - Evolving Search Space for Neural Architecture Search [70.71153433676024]
We present a Neural Search-space Evolution (NSE) scheme that amplifies the results from the previous effort by maintaining an optimized search space subset.
We achieve 77.3% top-1 retrain accuracy on ImageNet with 333M FLOPs, which yielded a state-of-the-art performance.
When the latency constraint is adopted, our result also performs better than the previous best-performing mobile models with a 77.9% Top-1 retrain accuracy.
arXiv Detail & Related papers (2020-11-22T01:11:19Z) - Effective, Efficient and Robust Neural Architecture Search [4.273005643715522]
Recent advances in adversarial attacks show the vulnerability of deep neural networks searched by Neural Architecture Search (NAS)
We propose an Effective, Efficient, and Robust Neural Architecture Search (E2RNAS) method to search a neural network architecture by taking the performance, robustness, and resource constraint into consideration.
Experiments on benchmark datasets show that the proposed E2RNAS method can find adversarially robust architectures with optimized model size and comparable classification accuracy.
arXiv Detail & Related papers (2020-11-19T13:46:23Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
We propose a two-sided variational graph autoencoder, which allows to smoothly encode and accurately reconstruct neural architectures from various search spaces.
We evaluate the proposed approach on neural architectures defined by the ENAS approach, the NAS-Bench-101 and the NAS-Bench-201 search spaces.
arXiv Detail & Related papers (2020-10-09T17:05:41Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
We introduce a new reinforcement learning based neural architecture search (NAS) methodology for generative adversarial network (GAN) architecture search.
The key idea is to formulate the GAN architecture search problem as a Markov decision process (MDP) for smoother architecture sampling.
We exploit an off-policy GAN architecture search algorithm that makes efficient use of the samples generated by previous policies.
arXiv Detail & Related papers (2020-07-17T18:29:17Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators.
In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs.
We propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN.
arXiv Detail & Related papers (2020-06-16T13:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.