DFNet: Discriminative feature extraction and integration network for
salient object detection
- URL: http://arxiv.org/abs/2004.01573v1
- Date: Fri, 3 Apr 2020 13:56:41 GMT
- Title: DFNet: Discriminative feature extraction and integration network for
salient object detection
- Authors: Mehrdad Noori, Sina Mohammadi, Sina Ghofrani Majelan, Ali Bahri,
Mohammad Havaei
- Abstract summary: We focus on two aspects of challenges in saliency detection using Convolutional Neural Networks.
Firstly, since salient objects appear in various sizes, using single-scale convolution would not capture the right size.
Secondly, using multi-level features helps the model use both local and global context.
- Score: 6.959742268104327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the powerful feature extraction capability of Convolutional Neural
Networks, there are still some challenges in saliency detection. In this paper,
we focus on two aspects of challenges: i) Since salient objects appear in
various sizes, using single-scale convolution would not capture the right size.
Moreover, using multi-scale convolutions without considering their importance
may confuse the model. ii) Employing multi-level features helps the model use
both local and global context. However, treating all features equally results
in information redundancy. Therefore, there needs to be a mechanism to
intelligently select which features in different levels are useful. To address
the first challenge, we propose a Multi-scale Attention Guided Module. This
module not only extracts multi-scale features effectively but also gives more
attention to more discriminative feature maps corresponding to the scale of the
salient object. To address the second challenge, we propose an Attention-based
Multi-level Integrator Module to give the model the ability to assign different
weights to multi-level feature maps. Furthermore, our Sharpening Loss function
guides our network to output saliency maps with higher certainty and less
blurry salient objects, and it has far better performance than the
Cross-entropy loss. For the first time, we adopt four different backbones to
show the generalization of our method. Experiments on five challenging datasets
prove that our method achieves the state-of-the-art performance. Our approach
is fast as well and can run at a real-time speed.
Related papers
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - FeatUp: A Model-Agnostic Framework for Features at Any Resolution [24.4201195336725]
FeatUp is a task- and model-agnostic framework to restore lost spatial information in deep features.
We introduce two variants of FeatUp: one that guides features with high-resolution signal in a single forward pass, and one that fits an implicit model to a single image to reconstruct features at any resolution.
We show that FeatUp significantly outperforms other feature upsampling and image super-resolution approaches in class activation map generation, transfer learning for segmentation and depth prediction, and end-to-end training for semantic segmentation.
arXiv Detail & Related papers (2024-03-15T17:57:06Z) - M$^3$Net: Multilevel, Mixed and Multistage Attention Network for Salient
Object Detection [22.60675416709486]
M$3$Net is an attention network for Salient Object Detection.
Cross-attention approach to achieve the interaction between multilevel features.
Mixed Attention Block aims at modeling context at both global and local levels.
Multilevel supervision strategy to optimize the aggregated feature stage-by-stage.
arXiv Detail & Related papers (2023-09-15T12:46:14Z) - HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness [2.341385717236931]
We propose a novel Hierarchical Depth Awareness network (HiDAnet) for RGB-D saliency detection.
Our motivation comes from the observation that the multi-granularity properties of geometric priors correlate well with the neural network hierarchies.
Our HiDAnet performs favorably over the state-of-the-art methods by large margins.
arXiv Detail & Related papers (2023-01-18T10:00:59Z) - Correlation-Aware Deep Tracking [83.51092789908677]
We propose a novel target-dependent feature network inspired by the self-/cross-attention scheme.
Our network deeply embeds cross-image feature correlation in multiple layers of the feature network.
Our model can be flexibly pre-trained on abundant unpaired images, leading to notably faster convergence than the existing methods.
arXiv Detail & Related papers (2022-03-03T11:53:54Z) - Multi-level Second-order Few-shot Learning [111.0648869396828]
We propose a Multi-level Second-order (MlSo) few-shot learning network for supervised or unsupervised few-shot image classification and few-shot action recognition.
We leverage so-called power-normalized second-order base learner streams combined with features that express multiple levels of visual abstraction.
We demonstrate respectable results on standard datasets such as Omniglot, mini-ImageNet, tiered-ImageNet, Open MIC, fine-grained datasets such as CUB Birds, Stanford Dogs and Cars, and action recognition datasets such as HMDB51, UCF101, and mini-MIT.
arXiv Detail & Related papers (2022-01-15T19:49:00Z) - Efficient Person Search: An Anchor-Free Approach [86.45858994806471]
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images.
To achieve this goal, state-of-the-art models typically add a re-id branch upon two-stage detectors like Faster R-CNN.
In this work, we present an anchor-free approach to efficiently tackling this challenging task, by introducing the following dedicated designs.
arXiv Detail & Related papers (2021-09-01T07:01:33Z) - Efficient and Accurate Multi-scale Topological Network for Single Image
Dehazing [31.543771270803056]
In this paper, we pay attention to the feature extraction and utilization of the input image itself.
We propose a Multi-scale Topological Network (MSTN) to fully explore the features at different scales.
Meanwhile, we design a Multi-scale Feature Fusion Module (MFFM) and an Adaptive Feature Selection Module (AFSM) to achieve the selection and fusion of features at different scales.
arXiv Detail & Related papers (2021-02-24T08:53:14Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.