Multi-scale Interactive Network for Salient Object Detection
- URL: http://arxiv.org/abs/2007.09062v1
- Date: Fri, 17 Jul 2020 15:41:37 GMT
- Title: Multi-scale Interactive Network for Salient Object Detection
- Authors: Youwei Pang, Xiaoqi Zhao, Lihe Zhang, Huchuan Lu
- Abstract summary: We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
- Score: 91.43066633305662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep-learning based salient object detection methods achieve great progress.
However, the variable scale and unknown category of salient objects are great
challenges all the time. These are closely related to the utilization of
multi-level and multi-scale features. In this paper, we propose the aggregate
interaction modules to integrate the features from adjacent levels, in which
less noise is introduced because of only using small up-/down-sampling rates.
To obtain more efficient multi-scale features from the integrated features, the
self-interaction modules are embedded in each decoder unit. Besides, the class
imbalance issue caused by the scale variation weakens the effect of the binary
cross entropy loss and results in the spatial inconsistency of the predictions.
Therefore, we exploit the consistency-enhanced loss to highlight the
fore-/back-ground difference and preserve the intra-class consistency.
Experimental results on five benchmark datasets demonstrate that the proposed
method without any post-processing performs favorably against 23
state-of-the-art approaches. The source code will be publicly available at
https://github.com/lartpang/MINet.
Related papers
- Robust Network Learning via Inverse Scale Variational Sparsification [55.64935887249435]
We introduce an inverse scale variational sparsification framework within a time-continuous inverse scale space formulation.
Unlike frequency-based methods, our approach not only removes noise by smoothing small-scale features.
We show the efficacy of our approach through enhanced robustness against various noise types.
arXiv Detail & Related papers (2024-09-27T03:17:35Z) - Attend, Distill, Detect: Attention-aware Entropy Distillation for Anomaly Detection [4.0679780034913335]
A knowledge-distillation based multi-class anomaly detection promises a low latency with a reasonably good performance but with a significant drop as compared to one-class version.
We propose a DCAM (Distributed Convolutional Attention Module) which improves the distillation process between teacher and student networks.
arXiv Detail & Related papers (2024-05-10T13:25:39Z) - Progressive Multi-scale Consistent Network for Multi-class Fundus Lesion
Segmentation [28.58972084293778]
We propose a progressive multi-scale consistent network (PMCNet) that integrates the proposed progressive feature fusion (PFF) block and dynamic attention block (DAB)
PFF block progressively integrates multi-scale features from adjacent encoding layers, facilitating feature learning of each layer by aggregating fine-grained details and high-level semantics.
DAB is designed to dynamically learn the attentive cues from the fused features at different scales, thus aiming to smooth the essential conflicts existing in multi-scale features.
arXiv Detail & Related papers (2022-05-31T12:10:01Z) - C$^{4}$Net: Contextual Compression and Complementary Combination Network
for Salient Object Detection [0.0]
We show that feature concatenation works better than other combination methods like multiplication or addition.
Also, joint feature learning gives better results, because of the information sharing during their processing.
arXiv Detail & Related papers (2021-10-22T16:14:10Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - Fine-Grained Dynamic Head for Object Detection [68.70628757217939]
We propose a fine-grained dynamic head to conditionally select a pixel-level combination of FPN features from different scales for each instance.
Experiments demonstrate the effectiveness and efficiency of the proposed method on several state-of-the-art detection benchmarks.
arXiv Detail & Related papers (2020-12-07T08:16:32Z) - Towards Better Object Detection in Scale Variation with Adaptive Feature
Selection [3.5352273012717044]
We propose a novel adaptive feature selection module (AFSM) to automatically learn the way to fuse multi-level representations in the channel dimension.
It significantly improves the performance of the detectors that have a feature pyramid structure.
A class-aware sampling mechanism (CASM) is proposed to tackle the class imbalance problem.
arXiv Detail & Related papers (2020-12-06T13:41:20Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot object detection (FSOD) helps detectors adapt to unseen classes with few training instances.
We propose a Multi-scale Positive Sample Refinement (MPSR) approach to enrich object scales in FSOD.
MPSR generates multi-scale positive samples as object pyramids and refines the prediction at various scales.
arXiv Detail & Related papers (2020-07-18T09:48:29Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z) - DFNet: Discriminative feature extraction and integration network for
salient object detection [6.959742268104327]
We focus on two aspects of challenges in saliency detection using Convolutional Neural Networks.
Firstly, since salient objects appear in various sizes, using single-scale convolution would not capture the right size.
Secondly, using multi-level features helps the model use both local and global context.
arXiv Detail & Related papers (2020-04-03T13:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.