Inferring Network Structure From Data
- URL: http://arxiv.org/abs/2004.02046v1
- Date: Sat, 4 Apr 2020 23:30:54 GMT
- Title: Inferring Network Structure From Data
- Authors: Ivan Brugere, Tanya Y. Berger-Wolf
- Abstract summary: We propose a network model selection methodology that focuses on evaluating a network's utility for varying tasks.
We demonstrate that this network definition matters in several ways for modeling the behavior of the underlying system.
- Score: 1.2437226707039446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Networks are complex models for underlying data in many application domains.
In most instances, raw data is not natively in the form of a network, but
derived from sensors, logs, images, or other data. Yet, the impact of the
various choices in translating this data to a network have been largely
unexamined. In this work, we propose a network model selection methodology that
focuses on evaluating a network's utility for varying tasks, together with an
efficiency measure which selects the most parsimonious model. We demonstrate
that this network definition matters in several ways for modeling the behavior
of the underlying system.
Related papers
- Leveraging advances in machine learning for the robust classification and interpretation of networks [0.0]
Simulation approaches involve selecting a suitable network generative model such as Erd"os-R'enyi or small-world.
We utilize advances in interpretable machine learning to classify simulated networks by our generative models based on various network attributes.
arXiv Detail & Related papers (2024-03-20T00:24:23Z) - NetBench: A Large-Scale and Comprehensive Network Traffic Benchmark Dataset for Foundation Models [15.452625276982987]
In computer networking, network traffic refers to the amount of data transmitted in the form of packets between internetworked computers or Cyber-Physical Systems.
We introduce the NetBench, a large-scale and comprehensive benchmark dataset for assessing machine learning models, especially foundation models, in both network traffic classification and generation tasks.
arXiv Detail & Related papers (2024-03-15T14:09:54Z) - Efficient and Accurate Hyperspectral Image Demosaicing with Neural Network Architectures [3.386560551295746]
This study investigates the effectiveness of neural network architectures in hyperspectral image demosaicing.
We introduce a range of network models and modifications, and compare them with classical methods and existing reference network approaches.
Results indicate that our networks outperform or match reference models in both datasets demonstrating exceptional performance.
arXiv Detail & Related papers (2023-12-21T08:02:49Z) - 5G Network Slicing: Analysis of Multiple Machine Learning Classifiers [0.0]
This paper assesses various machine learning techniques, including the logistic regression model, linear discriminant model, k-nearest neighbor's model, decision tree model, random forest model, SVC BernoulliNB model, and GaussianNB model, to investigate the accuracy and precision of each model on detecting network slices.
The report also gives an overview of 5G network slicing.
arXiv Detail & Related papers (2023-10-03T02:16:50Z) - The Multiple Subnetwork Hypothesis: Enabling Multidomain Learning by
Isolating Task-Specific Subnetworks in Feedforward Neural Networks [0.0]
We identify a methodology and network representational structure which allows a pruned network to employ previously unused weights to learn subsequent tasks.
We show that networks trained using our approaches are able to learn multiple tasks, which may be related or unrelated, in parallel or in sequence without sacrificing performance on any task or exhibiting catastrophic forgetting.
arXiv Detail & Related papers (2022-07-18T15:07:13Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Estimating informativeness of samples with Smooth Unique Information [108.25192785062367]
We measure how much a sample informs the final weights and how much it informs the function computed by the weights.
We give efficient approximations of these quantities using a linearized network.
We apply these measures to several problems, such as dataset summarization.
arXiv Detail & Related papers (2021-01-17T10:29:29Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Analyzing Neural Networks Based on Random Graphs [77.34726150561087]
We perform a massive evaluation of neural networks with architectures corresponding to random graphs of various types.
We find that none of the classical numerical graph invariants by itself allows to single out the best networks.
We also find that networks with primarily short-range connections perform better than networks which allow for many long-range connections.
arXiv Detail & Related papers (2020-02-19T11:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.