Intrusion Detection in Heterogeneous Networks with Domain-Adaptive Multi-Modal Learning
- URL: http://arxiv.org/abs/2508.03517v1
- Date: Tue, 05 Aug 2025 14:46:03 GMT
- Title: Intrusion Detection in Heterogeneous Networks with Domain-Adaptive Multi-Modal Learning
- Authors: Mabin Umman Varghese, Zahra Taghiyarrenani,
- Abstract summary: We develop a deep neural model that integrates multi-modal learning with domain adaptation techniques for classification.<n>Our model processes data from diverse sources in a sequential cyclic manner, allowing it to learn from multiple datasets and adapt to varying feature spaces.<n> Experimental results demonstrate that our proposed model significantly outperforms baseline neural models in classifying network intrusions.
- Score: 1.03590082373586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network Intrusion Detection Systems (NIDS) play a crucial role in safeguarding network infrastructure against cyberattacks. As the prevalence and sophistication of these attacks increase, machine learning and deep neural network approaches have emerged as effective tools for enhancing NIDS capabilities in detecting malicious activities. However, the effectiveness of traditional deep neural models is often limited by the need for extensive labelled datasets and the challenges posed by data and feature heterogeneity across different network domains. To address these limitations, we developed a deep neural model that integrates multi-modal learning with domain adaptation techniques for classification. Our model processes data from diverse sources in a sequential cyclic manner, allowing it to learn from multiple datasets and adapt to varying feature spaces. Experimental results demonstrate that our proposed model significantly outperforms baseline neural models in classifying network intrusions, particularly under conditions of varying sample availability and probability distributions. The model's performance highlights its ability to generalize across heterogeneous datasets, making it an efficient solution for real-world network intrusion detection.
Related papers
- Intrusion Detection System Using Deep Learning for Network Security [0.6554326244334868]
This paper proposes an experimental evaluation of IDS models based on deep learning techniques.<n>We focus on the classification of network traffic into malicious and benign categories.<n>Among the tested models, the best achieved an accuracy of 96 percent.
arXiv Detail & Related papers (2025-05-09T06:04:58Z) - Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
We propose a novel approach for enhancing the performance of an NIDS through the integration of Generative Adversarial Networks (GANs)
GANs generate synthetic network traffic data that closely mimics real-world network behavior.
Our findings show that the integration of GANs into NIDS can lead to enhancements in intrusion detection performance for attacks with limited training data.
arXiv Detail & Related papers (2024-04-11T04:01:15Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
We perform a comprehensive study on NSL-KDD, a network traffic dataset, by visualizing patterns and employing different learning-based models to detect cyber attacks.
Unlike previous shallow learning and deep learning models that use the single learning model approach for intrusion detection, we adopt a hierarchy strategy.
We demonstrate the advantage of the unsupervised representation learning model in binary intrusion detection tasks.
arXiv Detail & Related papers (2021-08-18T21:19:26Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Experimental Review of Neural-based approaches for Network Intrusion
Management [8.727349339883094]
We provide an experimental-based review of neural-based methods applied to intrusion detection issues.
We offer a complete view of the most prominent neural-based techniques relevant to intrusion detection, including deep-based approaches or weightless neural networks.
Our evaluation quantifies the value of neural networks, particularly when state-of-the-art datasets are used to train the models.
arXiv Detail & Related papers (2020-09-18T18:32:24Z) - Evaluation of Adversarial Training on Different Types of Neural Networks
in Deep Learning-based IDSs [3.8073142980733]
We focus on investigating the effectiveness of different evasion attacks and how to train a resilience deep learning-based IDS.
We use the min-max approach to formulate the problem of training robust IDS against adversarial examples.
Our experiments on different deep learning algorithms and different benchmark datasets demonstrate that defense using an adversarial training-based min-max approach improves the robustness against the five well-known adversarial attack methods.
arXiv Detail & Related papers (2020-07-08T23:33:30Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.