Adversarial-Prediction Guided Multi-task Adaptation for Semantic
Segmentation of Electron Microscopy Images
- URL: http://arxiv.org/abs/2004.02134v1
- Date: Sun, 5 Apr 2020 09:18:11 GMT
- Title: Adversarial-Prediction Guided Multi-task Adaptation for Semantic
Segmentation of Electron Microscopy Images
- Authors: Jiajin Yi, Zhimin Yuan, Jialin Peng
- Abstract summary: We introduce an adversarial-prediction guided multi-task network to learn the adaptation of a well-trained model for use on a novel unlabeled target domain.
Since no label is available on target domain, we learn an encoding representation not only for the supervised segmentation on source domain but also for unsupervised reconstruction of the target data.
- Score: 5.027571997864707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation is an essential step for electron microscopy (EM) image
analysis. Although supervised models have achieved significant progress, the
need for labor intensive pixel-wise annotation is a major limitation. To
complicate matters further, supervised learning models may not generalize well
on a novel dataset due to domain shift. In this study, we introduce an
adversarial-prediction guided multi-task network to learn the adaptation of a
well-trained model for use on a novel unlabeled target domain. Since no label
is available on target domain, we learn an encoding representation not only for
the supervised segmentation on source domain but also for unsupervised
reconstruction of the target data. To improve the discriminative ability with
geometrical cues, we further guide the representation learning by multi-level
adversarial learning in semantic prediction space. Comparisons and ablation
study on public benchmark demonstrated state-of-the-art performance and
effectiveness of our approach.
Related papers
- Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation [1.124958340749622]
We introduce a multitask learning framework to leverage correlations among the counting, detection, and segmentation tasks.
We develop a cross-position cut-and-paste for label augmentation and an entropy-based pseudo-label selection.
The proposed model is capable of significantly outperforming UDA methods and produces comparable performance as the supervised counterpart.
arXiv Detail & Related papers (2024-03-31T12:22:23Z) - Domain Adaptive Segmentation of Electron Microscopy with Sparse Point
Annotations [2.5137859989323537]
We develop a highly annotation-efficient approach with competitive performance.
We focus on weakly-supervised domain adaptation (WDA) with a type of extremely sparse and weak annotation.
We show that our model with only 15% point annotations can achieve comparable performance as supervised models.
arXiv Detail & Related papers (2022-10-24T10:50:37Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
We propose a novel weakly supervised multi-task framework called AuxSegNet to leverage saliency detection and multi-label image classification as auxiliary tasks.
Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations.
The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks.
arXiv Detail & Related papers (2021-07-25T11:39:58Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection.
In this paper, we first study how biases in the dataset affect existing methods.
We show that current contrastive approaches work surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets.
arXiv Detail & Related papers (2021-06-10T17:59:13Z) - Domain Adaptation for Semantic Segmentation via Patch-Wise Contrastive
Learning [62.7588467386166]
We leverage contrastive learning to bridge the domain gap by aligning the features of structurally similar label patches across domains.
Our approach consistently outperforms state-of-the-art unsupervised and semi-supervised methods on two challenging domain adaptive segmentation tasks.
arXiv Detail & Related papers (2021-04-22T13:39:12Z) - Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals [78.12377360145078]
We introduce a novel two-step framework that adopts a predetermined prior in a contrastive optimization objective to learn pixel embeddings.
This marks a large deviation from existing works that relied on proxy tasks or end-to-end clustering.
In particular, when fine-tuning the learned representations using just 1% of labeled examples on PASCAL, we outperform supervised ImageNet pre-training by 7.1% mIoU.
arXiv Detail & Related papers (2021-02-11T18:54:47Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Towards Adaptive Semantic Segmentation by Progressive Feature Refinement [16.40758125170239]
We propose an innovative progressive feature refinement framework, along with domain adversarial learning to boost the transferability of segmentation networks.
As a result, the segmentation models trained with source domain images can be transferred to a target domain without significant performance degradation.
arXiv Detail & Related papers (2020-09-30T04:17:48Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Domain Adaptive Medical Image Segmentation via Adversarial Learning of
Disease-Specific Spatial Patterns [6.298270929323396]
We propose an unsupervised domain adaptation framework for boosting image segmentation performance across multiple domains.
We enforce architectures to be adaptive to new data by rejecting improbable segmentation patterns and implicitly learning through semantic and boundary information.
We demonstrate that recalibrating the deep networks on a few unlabeled images from the target domain improves the segmentation accuracy significantly.
arXiv Detail & Related papers (2020-01-25T13:48:02Z) - Learning to adapt class-specific features across domains for semantic
segmentation [36.36210909649728]
In this thesis, we present a novel architecture, which learns to adapt features across domains by taking into account per class information.
We adopt the recently introduced StarGAN architecture as image translation backbone, since it is able to perform translations across multiple domains by means of a single generator network.
arXiv Detail & Related papers (2020-01-22T23:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.