Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations
- URL: http://arxiv.org/abs/2106.05967v1
- Date: Thu, 10 Jun 2021 17:59:13 GMT
- Title: Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations
- Authors: Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Luc Van
Gool
- Abstract summary: Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection.
In this paper, we first study how biases in the dataset affect existing methods.
We show that current contrastive approaches work surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets.
- Score: 78.12377360145078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive self-supervised learning has outperformed supervised pretraining
on many downstream tasks like segmentation and object detection. However,
current methods are still primarily applied to curated datasets like ImageNet.
In this paper, we first study how biases in the dataset affect existing
methods. Our results show that current contrastive approaches work surprisingly
well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed
and (iii) general versus domain-specific datasets. Second, given the generality
of the approach, we try to realize further gains with minor modifications. We
show that learning additional invariances -- through the use of multi-scale
cropping, stronger augmentations and nearest neighbors -- improves the
representations. Finally, we observe that MoCo learns spatially structured
representations when trained with a multi-crop strategy. The representations
can be used for semantic segment retrieval and video instance segmentation
without finetuning. Moreover, the results are on par with specialized models.
We hope this work will serve as a useful study for other researchers. The code
and models will be available at
https://github.com/wvangansbeke/Revisiting-Contrastive-SSL.
Related papers
- Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
We propose a novel method named Regularized Contrastive Partial Multi-view Outlier Detection (RCPMOD)
In this framework, we utilize contrastive learning to learn view-consistent information and distinguish outliers by the degree of consistency.
Experimental results on four benchmark datasets demonstrate that our proposed approach could outperform state-of-the-art competitors.
arXiv Detail & Related papers (2024-08-02T14:34:27Z) - Multi-Grained Contrast for Data-Efficient Unsupervised Representation Learning [10.630297877530614]
We propose a novel Multi-Grained Contrast method (MGC) for unsupervised representation learning.
Specifically, we construct delicate multi-grained correspondences between positive views and then conduct multi-grained contrast by the correspondences to learn more general unsupervised representations.
Our method significantly outperforms the existing state-of-the-art methods on extensive downstream tasks, including object detection, instance segmentation, scene parsing, semantic segmentation and keypoint detection.
arXiv Detail & Related papers (2024-07-02T07:35:21Z) - Unsupervised Representation Learning for 3D Point Cloud Data [66.92077180228634]
We propose a simple yet effective approach for unsupervised point cloud learning.
In particular, we identify a very useful transformation which generates a good contrastive version of an original point cloud.
We conduct experiments on three downstream tasks which are 3D object classification, shape part segmentation and scene segmentation.
arXiv Detail & Related papers (2021-10-13T10:52:45Z) - Dynamic Relevance Learning for Few-Shot Object Detection [6.550840743803705]
We propose a dynamic relevance learning model, which utilizes the relationship between all support images and Region of Interest (RoI) on the query images to construct a dynamic graph convolutional network (GCN)
The proposed model achieves the best overall performance, which shows its effectiveness of learning more generalized features.
arXiv Detail & Related papers (2021-08-04T18:29:42Z) - Remote Sensing Images Semantic Segmentation with General Remote Sensing
Vision Model via a Self-Supervised Contrastive Learning Method [13.479068312825781]
We propose Global style and Local matching Contrastive Learning Network (GLCNet) for remote sensing semantic segmentation.
Specifically, the global style contrastive module is used to learn an image-level representation better.
The local features matching contrastive module is designed to learn representations of local regions which is beneficial for semantic segmentation.
arXiv Detail & Related papers (2021-06-20T03:03:40Z) - A Survey on Contrastive Self-supervised Learning [0.0]
Self-supervised learning has gained popularity because of its ability to avoid the cost of annotating large-scale datasets.
Contrastive learning has recently become a dominant component in self-supervised learning methods for computer vision, natural language processing (NLP), and other domains.
This paper provides an extensive review of self-supervised methods that follow the contrastive approach.
arXiv Detail & Related papers (2020-10-31T21:05:04Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Demystifying Contrastive Self-Supervised Learning: Invariances,
Augmentations and Dataset Biases [34.02639091680309]
Recent gains in performance come from training instance classification models, treating each image and it's augmented versions as samples of a single class.
We demonstrate that approaches like MOCO and PIRL learn occlusion-invariant representations.
Second, we demonstrate that these approaches obtain further gains from access to a clean object-centric training dataset like Imagenet.
arXiv Detail & Related papers (2020-07-28T00:11:31Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.