Stylistic Dialogue Generation via Information-Guided Reinforcement
Learning Strategy
- URL: http://arxiv.org/abs/2004.02202v1
- Date: Sun, 5 Apr 2020 13:58:14 GMT
- Title: Stylistic Dialogue Generation via Information-Guided Reinforcement
Learning Strategy
- Authors: Yixuan Su, Deng Cai, Yan Wang, Simon Baker, Anna Korhonen, Nigel
Collier, Xiaojiang Liu
- Abstract summary: We introduce a new training strategy, know as Information-Guided Reinforcement Learning (IG-RL)
In IG-RL, a training model is encouraged to explore stylistic expressions while being constrained to maintain its content quality.
This is achieved by adopting reinforcement learning strategy with statistical style information guidance for quality-preserving explorations.
- Score: 65.98002918470544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stylistic response generation is crucial for building an engaging dialogue
system for industrial use. While it has attracted much research interest,
existing methods often generate stylistic responses at the cost of the content
quality (relevance and fluency). To enable better balance between the content
quality and the style, we introduce a new training strategy, know as
Information-Guided Reinforcement Learning (IG-RL). In IG-RL, a training model
is encouraged to explore stylistic expressions while being constrained to
maintain its content quality. This is achieved by adopting reinforcement
learning strategy with statistical style information guidance for
quality-preserving explorations. Experiments on two datasets show that the
proposed approach outperforms several strong baselines in terms of the overall
response performance.
Related papers
- Revisiting Robust RAG: Do We Still Need Complex Robust Training in the Era of Powerful LLMs? [69.38149239733994]
We investigate whether complex robust training strategies remain necessary as model capacity grows.
We find that as models become more powerful, the performance gains brought by complex robust training methods drop off dramatically.
Our findings suggest that RAG systems can benefit from simpler architectures and training strategies as models become more powerful.
arXiv Detail & Related papers (2025-02-17T03:34:31Z) - Enhancing Retrieval-Augmented Generation: A Study of Best Practices [16.246719783032436]
We develop advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG.
Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, and Focus Mode retrieving relevant context at sentence-level.
Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency.
arXiv Detail & Related papers (2025-01-13T15:07:55Z) - StyleChat: Learning Recitation-Augmented Memory in LLMs for Stylized Dialogue Generation [43.29667566560533]
We introduce a stylized dialogue dataset StyleEval with 38 styles by leveraging the generative power of Large Language Models (LLMs)
We propose the stylized dialogue framework StyleChat via recitation-augmented memory strategy and multi-task style learning strategy to promote generalization ability.
arXiv Detail & Related papers (2024-03-18T03:26:18Z) - Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning [48.79569442193824]
We show that COMRL algorithms are essentially optimizing the same mutual information objective between the task variable $M$ and its latent representation $Z$ by implementing various approximate bounds.
As demonstrations, we propose a supervised and a self-supervised implementation of $I(Z; M)$, and empirically show that the corresponding optimization algorithms exhibit remarkable generalization across a broad spectrum of RL benchmarks.
This work lays the information theoretic foundation for COMRL methods, leading to a better understanding of task representation learning in the context of reinforcement learning.
arXiv Detail & Related papers (2024-02-04T09:58:42Z) - Hierarchical Continual Reinforcement Learning via Large Language Model [15.837883929274758]
Hi-Core is designed to facilitate the transfer of high-level knowledge.
It orchestrates a twolayer structure: high-level policy formulation by a large language model (LLM)
Hi-Core has demonstrated its effectiveness in handling diverse CRL tasks, which outperforms popular baselines.
arXiv Detail & Related papers (2024-01-25T03:06:51Z) - Contextual Knowledge Learning For Dialogue Generation [13.671946960656467]
We present a novel approach to context and knowledge weighting as an integral part of model training.
We guide the model training through a Contextual Knowledge Learning process which involves Latent Vectors for context and knowledge.
arXiv Detail & Related papers (2023-05-29T16:54:10Z) - Learning to Express in Knowledge-Grounded Conversation [62.338124154016825]
We consider two aspects of knowledge expression, namely the structure of the response and style of the content in each part.
We propose a segmentation-based generation model and optimize the model by a variational approach to discover the underlying pattern of knowledge expression in a response.
arXiv Detail & Related papers (2022-04-12T13:43:47Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z) - Knowledge-guided Deep Reinforcement Learning for Interactive
Recommendation [49.32287384774351]
Interactive recommendation aims to learn from dynamic interactions between items and users to achieve responsiveness and accuracy.
We propose Knowledge-Guided deep Reinforcement learning to harness the advantages of both reinforcement learning and knowledge graphs for interactive recommendation.
arXiv Detail & Related papers (2020-04-17T05:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.