Enhancing Retrieval-Augmented Generation: A Study of Best Practices
- URL: http://arxiv.org/abs/2501.07391v1
- Date: Mon, 13 Jan 2025 15:07:55 GMT
- Title: Enhancing Retrieval-Augmented Generation: A Study of Best Practices
- Authors: Siran Li, Linus Stenzel, Carsten Eickhoff, Seyed Ali Bahrainian,
- Abstract summary: We develop advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG.<n>Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, and Focus Mode retrieving relevant context at sentence-level.<n>Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency.
- Score: 16.246719783032436
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) systems have recently shown remarkable advancements by integrating retrieval mechanisms into language models, enhancing their ability to produce more accurate and contextually relevant responses. However, the influence of various components and configurations within RAG systems remains underexplored. A comprehensive understanding of these elements is essential for tailoring RAG systems to complex retrieval tasks and ensuring optimal performance across diverse applications. In this paper, we develop several advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG. Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, Contrastive In-Context Learning knowledge bases, multilingual knowledge bases, and Focus Mode retrieving relevant context at sentence-level. Through extensive experimentation, we provide a detailed analysis of how these factors influence response quality. Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency, thereby paving the way for more adaptable and high-performing RAG frameworks in diverse real-world scenarios. Our code and implementation details are publicly available.
Related papers
- Context-Guided Dynamic Retrieval for Improving Generation Quality in RAG Models [2.9687381456164004]
It proposes a state-aware dynamic knowledge retrieval mechanism to enhance semantic understanding and knowledge scheduling efficiency.
The proposed structure is thoroughly evaluated across different large models, including GPT-4, GPT-4o, and DeepSeek.
The approach also demonstrates stronger robustness and generation consistency in tasks involving semantic ambiguity and multi-document fusion.
arXiv Detail & Related papers (2025-04-28T02:50:45Z) - Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
We introduce Dialectic-RAG (DRAG), a modular approach that evaluates retrieved information by comparing, contrasting, and resolving conflicting perspectives.
We show the impact of our framework both as an in-context learning strategy and for constructing demonstrations to instruct smaller models.
arXiv Detail & Related papers (2025-04-07T06:55:15Z) - A Survey of Multimodal Retrieval-Augmented Generation [3.9616308910160445]
Multimodal Retrieval-Augmented Generation (MRAG) enhances large language models (LLMs) by integrating multimodal data (text, images, videos) into retrieval and generation processes.
Recent studies show MRAG outperforms traditional Retrieval-Augmented Generation (RAG) in scenarios requiring both visual and textual understanding.
arXiv Detail & Related papers (2025-03-26T02:43:09Z) - A Survey on Knowledge-Oriented Retrieval-Augmented Generation [45.65542434522205]
Retrieval-Augmented Generation (RAG) has gained significant attention in recent years.
RAG combines large-scale retrieval systems with generative models.
We discuss the key characteristics of RAG, such as its ability to augment generative models with dynamic external knowledge.
arXiv Detail & Related papers (2025-03-11T01:59:35Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs)
We propose StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure.
Experiments show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios.
arXiv Detail & Related papers (2024-10-11T13:52:44Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
We introduce a novel multimodal RAG framework named RMR (Retrieval Meets Reasoning)
The RMR framework employs a bi-modal retrieval module to identify the most relevant question-answer pairs.
It significantly boosts the performance of various vision-language models across a spectrum of benchmark datasets.
arXiv Detail & Related papers (2024-05-31T14:23:49Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
Large Language Models (LLMs) showcase impressive capabilities but encounter challenges like hallucination.
Retrieval-Augmented Generation (RAG) has emerged as a promising solution by incorporating knowledge from external databases.
arXiv Detail & Related papers (2023-12-18T07:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.