論文の概要: Dynamic Decision Boundary for One-class Classifiers applied to
non-uniformly Sampled Data
- arxiv url: http://arxiv.org/abs/2004.02273v1
- Date: Sun, 5 Apr 2020 18:29:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 12:09:40.267928
- Title: Dynamic Decision Boundary for One-class Classifiers applied to
non-uniformly Sampled Data
- Title(参考訳): 非一様サンプリングデータに適用した一類分類器の動的決定境界
- Authors: Riccardo La Grassa, Ignazio Gallo, Nicola Landro
- Abstract要約: パターン認識の典型的な問題は、一様でないサンプルデータである。
本稿では,動的決定境界を持つ最小スパンニング木に基づく一クラス分類器を提案する。
- 参考スコア(独自算出の注目度): 0.9569316316728905
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A typical issue in Pattern Recognition is the non-uniformly sampled data,
which modifies the general performance and capability of machine learning
algorithms to make accurate predictions. Generally, the data is considered
non-uniformly sampled when in a specific area of data space, they are not
enough, leading us to misclassification problems. This issue cut down the goal
of the one-class classifiers decreasing their performance. In this paper, we
propose a one-class classifier based on the minimum spanning tree with a
dynamic decision boundary (OCdmst) to make good prediction also in the case we
have non-uniformly sampled data. To prove the effectiveness and robustness of
our approach we compare with the most recent one-class classifier reaching the
state-of-the-art in most of them.
- Abstract(参考訳): パターン認識の典型的な問題は、一様でないサンプルデータであり、機械学習アルゴリズムの一般的な性能と能力を変更して正確な予測を行う。
一般に、データはデータ空間の特定の領域では不十分な場合に一様にサンプリングされないと考えられており、誤分類の問題に繋がる。
この問題は、性能を低下させる1クラスの分類器の目標を削減した。
本稿では, 動的決定境界(OCdmst)を持つ最小スパンニング木に基づく一クラス分類器を提案する。
我々のアプローチの有効性と堅牢性を証明するために、私たちは最新の1クラス分類器と比較します。
関連論文リスト
- Characterizing the Optimal 0-1 Loss for Multi-class Classification with
a Test-time Attacker [57.49330031751386]
我々は,任意の離散データセット上の複数クラス分類器に対するテスト時間攻撃の存在下での損失に対する情報理論的下位境界を求める。
本稿では,データと敵対的制約から競合ハイパーグラフを構築する際に発生する最適0-1損失を求めるための一般的なフレームワークを提供する。
論文 参考訳(メタデータ) (2023-02-21T15:17:13Z) - Generative Robust Classification [3.4773470589069477]
相対的に頑健な差別的分類(ソフトマックス)の訓練は、頑健な分類に対する主要なアプローチである。
本稿では, 対人訓練(AT)に基づく生成モデルについて検討する。
アプローチの堅牢性を向上するために、高度なデータ拡張を適用するのは簡単です。
論文 参考訳(メタデータ) (2022-12-14T15:33:11Z) - Determination of class-specific variables in nonparametric
multiple-class classification [0.0]
確率に基づく非パラメトリックな多重クラス分類法を提案し、それを個々のクラスに対して高い影響変数を識別する能力と統合する。
提案手法の特性を報告し, 合成データと実データの両方を用いて, 異なる分類条件下での特性を説明する。
論文 参考訳(メタデータ) (2022-05-07T10:08:58Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
医学、情報検索、サイバーセキュリティ、ソーシャルメディアなどの多くのアプリケーションドメインでは、分類モデルの導入に使用されるデータセットは、各クラスのインスタンスの不平等な分布を持つことが多い。
この状況は不均衡データ分類と呼ばれ、少数民族の例では予測性能が低い。
オーバーサンプリングとアンダーサンプリングの技術は、各クラスの例の数とバランスをとることでこの問題に対処する、よく知られた戦略である。
論文 参考訳(メタデータ) (2021-12-15T18:56:39Z) - Does Adversarial Oversampling Help us? [10.210871872870737]
本稿では,データセットのクラス不均衡を処理するために,3人のプレイヤーによるゲームベースのエンドツーエンド手法を提案する。
本稿では,敵対的マイノリティ・オーバーサンプリングではなく,敵対的オーバーサンプリング (AO) とデータ空間・オーバーサンプリング (DO) のアプローチを提案する。
提案手法の有効性を高次元・高不均衡・大規模マルチクラスデータセットを用いて検証した。
論文 参考訳(メタデータ) (2021-08-20T05:43:17Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
異常検出(AD)は、製造から医療まで、さまざまな分野に応用されている。
本研究は、トレーニングデータ全体がラベル付けされておらず、正規サンプルと異常サンプルの両方を含む可能性のある、教師なしAD問題に焦点を当てる。
この問題に対処するため,データリファインメントによる堅牢な一級分類フレームワークを構築した。
本手法は6.3AUCと12.5AUCの平均精度で最先端の1クラス分類法より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-11T01:36:08Z) - Minimax Active Learning [61.729667575374606]
アクティブラーニングは、人間のアノテーションによってラベル付けされる最も代表的なサンプルをクエリすることによって、ラベル効率の高いアルゴリズムを開発することを目指している。
現在のアクティブラーニング技術は、最も不確実なサンプルを選択するためにモデルの不確実性に頼るか、クラスタリングを使うか、最も多様なラベルのないサンプルを選択するために再構築する。
我々は,不確実性と多様性を両立させる半教師付きミニマックスエントロピーに基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-12-18T19:03:40Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
そこで本研究では,より大規模で未観測のクラスに対して,期待する精度を推定するために,分類器の性能をどのように利用することができるかを検討する。
ニューラルネットワークに基づく頑健なアルゴリズム "CleaneX" を定式化し,任意のサイズのクラスに対して,そのような分類器の精度を推定する。
論文 参考訳(メタデータ) (2020-10-28T14:37:25Z) - Identifying Wrongly Predicted Samples: A Method for Active Learning [6.976600214375139]
本稿では,不確実性を超えた単純なサンプル選択基準を提案する。
予測されたサンプルを正しく識別するために、最先端の結果とより良いレートを示す。
論文 参考訳(メタデータ) (2020-10-14T09:00:42Z) - Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier [68.38233199030908]
ロングテール認識は、現実世界のシナリオにおける自然な非一様分散データに取り組む。
モダンは人口密度の高いクラスではうまく機能するが、そのパフォーマンスはテールクラスでは著しく低下する。
Deep-RTCは、リアリズムと階層的予測を組み合わせたロングテール問題の新しい解法として提案されている。
論文 参考訳(メタデータ) (2020-07-20T05:57:42Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。