論文の概要: Intrinsic Exploration as Multi-Objective RL
- arxiv url: http://arxiv.org/abs/2004.02380v1
- Date: Mon, 6 Apr 2020 02:37:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 05:33:26.850588
- Title: Intrinsic Exploration as Multi-Objective RL
- Title(参考訳): 多目的RLとしての固有探査
- Authors: Philippe Morere and Fabio Ramos
- Abstract要約: 内在的モチベーションは、報酬が非常に少ないときに強化学習(RL)エージェントを探索することを可能にする。
本稿では,多目的RLに基づくフレームワークを提案する。
この定式化は、探索と搾取のバランスを政策レベルでもたらし、従来の方法よりも有利になる。
- 参考スコア(独自算出の注目度): 29.124322674133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intrinsic motivation enables reinforcement learning (RL) agents to explore
when rewards are very sparse, where traditional exploration heuristics such as
Boltzmann or e-greedy would typically fail. However, intrinsic exploration is
generally handled in an ad-hoc manner, where exploration is not treated as a
core objective of the learning process; this weak formulation leads to
sub-optimal exploration performance. To overcome this problem, we propose a
framework based on multi-objective RL where both exploration and exploitation
are being optimized as separate objectives. This formulation brings the balance
between exploration and exploitation at a policy level, resulting in advantages
over traditional methods. This also allows for controlling exploration while
learning, at no extra cost. Such strategies achieve a degree of control over
agent exploration that was previously unattainable with classic or intrinsic
rewards. We demonstrate scalability to continuous state-action spaces by
presenting a method (EMU-Q) based on our framework, guiding exploration towards
regions of higher value-function uncertainty. EMU-Q is experimentally shown to
outperform classic exploration techniques and other intrinsic RL methods on a
continuous control benchmark and on a robotic manipulator.
- Abstract(参考訳): 内在的モチベーションにより、強化学習(RL)エージェントは報酬が非常に少ないときに探索できるようになり、ボルツマンやe-greedyのような伝統的な探索ヒューリスティックは一般的に失敗する。
しかし、本質的な探索は一般に、学習過程の中核的な目的として探索が扱われないアドホックな方法で扱われ、この弱い定式化は、準最適探索性能をもたらす。
そこで本研究では,探索と搾取の両方を別々の目的として最適化した多目的rlに基づくフレームワークを提案する。
この定式化は、政策レベルでの探索と搾取のバランスをもたらし、従来の方法よりも有利になる。
これにより、学習中の探索を余分なコストなしで制御できる。
このような戦略は、それまでは古典的あるいは本質的な報酬で達成できなかったエージェント探索をある程度制御する。
我々は,我々の枠組みに基づく手法(EMU-Q)を提示し,より高い値関数の不確実性のある領域への探索を導くことによって,連続状態-作用空間へのスケーラビリティを示す。
EMU-Qは、連続制御ベンチマークやロボットマニピュレータ上で、古典的な探査手法や他の固有のRL法よりも優れていることが実験的に示されている。
関連論文リスト
- Random Latent Exploration for Deep Reinforcement Learning [71.88709402926415]
本稿ではRLE(Random Latent Exploration)と呼ばれる新しい探査手法を紹介する。
RLEはボーナスベースとノイズベース(ディープRLを効果的に探索するための2つの一般的なアプローチ)の強みを組み合わせたものである。
AtariとIsaacGymのベンチマークで評価し、RLEは他の手法よりも全タスクの総合スコアが高いことを示した。
論文 参考訳(メタデータ) (2024-07-18T17:55:22Z) - On the Importance of Exploration for Generalization in Reinforcement
Learning [89.63074327328765]
本研究では,不確実性の高い状態の探索を支援する方法であるEDE: Exploration via Distributional Ensembleを提案する。
当社のアルゴリズムは,ProcgenとCrafterの両面で最先端を実現するための,最初のバリューベースアプローチである。
論文 参考訳(メタデータ) (2023-06-08T18:07:02Z) - Strangeness-driven Exploration in Multi-Agent Reinforcement Learning [0.0]
我々は,任意の集中型トレーニングと分散実行(CTDE)に基づくMARLアルゴリズムに容易に組み込むことのできる,奇異性のある新たな探索手法を提案する。
探索ボーナスは奇異性から得られ,提案手法はMARLタスクでよく見られる遷移の影響を受けない。
論文 参考訳(メタデータ) (2022-12-27T11:08:49Z) - Deep Intrinsically Motivated Exploration in Continuous Control [0.0]
連続的なシステムでは、ネットワークのパラメータや選択されたアクションがランダムノイズによって乱されるような、間接的でない戦略によって探索が行われることが多い。
我々は、動物モチベーションシステムに関する既存の理論を強化学習パラダイムに適応させ、新しい探究戦略を導入する。
我々のフレームワークは、より大きく多様な状態空間に拡張し、ベースラインを劇的に改善し、間接的でない戦略を大幅に上回る。
論文 参考訳(メタデータ) (2022-10-01T14:52:16Z) - SEREN: Knowing When to Explore and When to Exploit [14.188362393915432]
本稿では,SEREN(Sive Reinforcement Exploration Network)を紹介する。
インパルス制御(英語版)として知られる政策を用いて、スイッチャーは探索政策に切り替える最良の状態のセットを決定することができる。
我々は、SERENが急速に収束し、純粋な搾取に向けた自然なスケジュールを導き出すことを証明した。
論文 参考訳(メタデータ) (2022-05-30T12:44:56Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
好みに基づく強化学習アルゴリズムを対象とした探索手法を提案する。
我々の基本的な考え方は、学習した報酬に基づいて、斬新さを測定することによって、本質的な報酬を設計することである。
実験により、学習報酬の不確実性からの探索ボーナスは、好みに基づくRLアルゴリズムのフィードバック効率とサンプル効率の両方を改善することが示された。
論文 参考訳(メタデータ) (2022-05-24T23:22:10Z) - Intrinsically-Motivated Reinforcement Learning: A Brief Introduction [0.0]
強化学習(Reinforcement Learning, RL)は、機械学習の3つの基本パラダイムの1つである。
本稿では,RLにおける探査改善の問題点を考察し,本質的な動機付け型RLを導入した。
論文 参考訳(メタデータ) (2022-03-03T12:39:58Z) - Long-Term Exploration in Persistent MDPs [68.8204255655161]
RbExplore (Rollback-Explore) と呼ばれる探査手法を提案する。
本稿では,マルコフ決定過程を永続的に決定する手法であるロールバック・エクスロア (RbExplore) を提案する。
我々は,ペルシャのプリンス・オブ・ペルシャゲームにおいて,報酬やドメイン知識を伴わずに,我々のアルゴリズムを検証した。
論文 参考訳(メタデータ) (2021-09-21T13:47:04Z) - Exploration in Deep Reinforcement Learning: A Comprehensive Survey [24.252352133705735]
Deep Reinforcement Learning (DRL)とDeep Multi-agent Reinforcement Learning (MARL)は、ゲームAI、自動運転車、ロボティクス、ファイナンスなど、幅広い領域で大きな成功を収めている。
DRLおよび深層MARLエージェントはサンプリング非効率であることが広く知られており、比較的単純なゲーム設定でも数百万のインタラクションが必要である。
本稿では,DRLおよび深部MARLにおける既存探査手法に関する総合的な調査を行う。
論文 参考訳(メタデータ) (2021-09-14T13:16:33Z) - Cooperative Exploration for Multi-Agent Deep Reinforcement Learning [127.4746863307944]
深層強化学習のための協調型マルチエージェント探索(CMAE)を提案する。
ゴールは正規化エントロピーに基づく手法により、複数の射影状態空間から選択される。
CMAEが様々なタスクのベースラインを一貫して上回っていることを実証する。
論文 参考訳(メタデータ) (2021-07-23T20:06:32Z) - Never Give Up: Learning Directed Exploration Strategies [63.19616370038824]
そこで我々は,多岐にわたる探索政策を学習し,ハード・サーベイ・ゲームを解決するための強化学習エージェントを提案する。
エージェントの最近の経験に基づいて,k-アネレスト隣人を用いたエピソード記憶に基づく本質的な報酬を構築し,探索政策を訓練する。
自己教師付き逆動力学モデルを用いて、近くのルックアップの埋め込みを訓練し、エージェントが制御できる新しい信号をバイアスする。
論文 参考訳(メタデータ) (2020-02-14T13:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。