Two-level systems in superconducting quantum devices due to trapped
quasiparticles
- URL: http://arxiv.org/abs/2004.02485v1
- Date: Mon, 6 Apr 2020 08:38:28 GMT
- Title: Two-level systems in superconducting quantum devices due to trapped
quasiparticles
- Authors: S. E. de Graaf, L. Faoro, L. B. Ioffe, S. Mahashabde, J. J. Burnett,
T. Lindstr\"om, S. E. Kubatkin, A. V. Danilov and A. Ya. Tzalenchuk
- Abstract summary: We show that non-equilibrium quasiparticles can induce qubit relaxation in superconducting quantum circuits.
Our results imply that trapped QPs can induce qubit relaxation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major issue for the implementation of large scale superconducting quantum
circuits is the interaction with interfacial two-level system defects (TLS)
that leads to qubit relaxation and impedes qubit operation in certain frequency
ranges that also drift in time. Another major challenge comes from
non-equilibrium quasiparticles (QPs) that result in qubit dephasing and
relaxation. In this work we show that such QPs can also serve as a source of
TLS. Using spectral and temporal mapping of TLS-induced fluctuations in
frequency tunable resonators, we identify a subset of the general TLS
population that are highly coherent TLS with a low reconfiguration temperature
$\sim$ 300 mK, and a non-uniform density of states. These properties can be
understood if these TLS are formed by QPs trapped in shallow subgap states
formed by spatial fluctutations of the superconducting order parameter
$\Delta$. Magnetic field measurements of one such TLS reveals a link to
superconductivity. Our results imply that trapped QPs can induce qubit
relaxation.
Related papers
- Two-tone spectroscopy for the detection of two-level systems in superconducting qubits [108.40985826142428]
Two-level systems (TLS) of unclear physical origin are a major contributor to decoherence in superconducting qubits.
We propose a novel method that requires only a microwave drive and dispersive readout, and thus also works fixed-frequency qubits.
arXiv Detail & Related papers (2024-04-22T09:53:00Z) - Phonon engineering of atomic-scale defects in superconducting quantum
circuits [5.596598303356484]
tunneling two-level systems (TLS) have taken on further relevance in the field of quantum computing.
We take a new approach that seeks to directly modify the properties of TLS through nanoscale-engineering.
Our work paves the way for in-depth investigation and coherent control of TLS.
arXiv Detail & Related papers (2023-10-05T22:17:09Z) - Quantum defects from single surface exhibit strong mutual interactions [0.0]
Two-level system defects constitute a major decoherence source of quantum information science.
We study surface TLSs at the metal-air interface using a quasi-uniform field within vacuum-gap capacitors of resonators.
arXiv Detail & Related papers (2023-02-01T08:53:10Z) - Simulating noise on a quantum processor: interactions between a qubit
and resonant two-level system bath [0.3769303106863453]
We build a model that incorporates the standard model, the electric field distributions in the qubit, and open quantum system dynamics.
We find that the 200 most strongly coupled TLSs can accurately describe the qubit energy relaxation time.
Our work can provide guidance for future quantum processor designs with improved qubit coherence times.
arXiv Detail & Related papers (2022-11-15T22:12:07Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Experimentally revealing anomalously large dipoles in a quantum-circuit
dielectric [50.591267188664666]
Two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum devices.
We show the existence of two distinct ensembles of TLSs, interacting weakly and strongly with phonons.
Results may shed new light on the low temperature characteristics of amorphous solids.
arXiv Detail & Related papers (2021-10-20T19:42:22Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Interacting Defects Generate Stochastic Fluctuations in Superconducting
Qubits [0.0]
Recent developments on superconducting resonators and qubits enable detailed studies on the physics of two-level systems.
We measure the energy relaxation time of a frequency-tunable superconducting qubit over time and frequency.
The experiments show a variety of patterns that we are able to explain by means of extensive simulations.
arXiv Detail & Related papers (2021-06-29T22:52:36Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.