Implementing two-photon three-degree-of-freedom hyper-parallel
controlled phase flip gate through cavity-assisted interactions
- URL: http://arxiv.org/abs/2004.02495v1
- Date: Mon, 6 Apr 2020 08:58:09 GMT
- Title: Implementing two-photon three-degree-of-freedom hyper-parallel
controlled phase flip gate through cavity-assisted interactions
- Authors: Hai-Rui Wei, Wen-Qiang Liu, and Ning-Yang Chen
- Abstract summary: We present a method to implement a hyper-parallel controlled-phase-flip (hyper-CPF) gate for frequency-, spatial-, and time-bin-encoded qubits.
The scheme is specifically advantageous in decreasing against the dissipate noise, increasing the quantum channel capacity, and reducing the quantum resource overhead.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyper-parallel quantum information processing is a promising and beneficial
research field. In this paper, we present a method to implement a
hyper-parallel controlled-phase-flip (hyper-CPF) gate for frequency-, spatial-,
and time-bin-encoded qubits by coupling flying photons to trapped nitrogen
vacancy (NV) defect centers. The scheme, which differs from their conventional
parallel counterparts, is specifically advantageous in decreasing against the
dissipate noise, increasing the quantum channel capacity, and reducing the
quantum resource overhead. The gate qubits with frequency, spatial, and
time-bin degrees of freedom (DOF) are immune to quantum decoherence in optical
fibers, whereas the polarization photons are easily disturbed by the ambient
noise.
Related papers
- Band Gap Engineering and Controlling Transport Properties of Single
Photons in Periodic and Disordered Jaynes-Cummings Arrays [0.0]
We study the single photon transport properties in periodic and position-disordered Jaynes-Cummings arrays.
In the disordered case, we find that the single photon transmission curves show the disappearance of band formation.
The results of this work may find application in the study of quantum many-body effects in the optical domain.
arXiv Detail & Related papers (2024-01-26T22:32:21Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Controlled-Phase Gate by Dynamic Coupling of Photons to a Two-Level
Emitter [0.0]
We propose an architecture for achieving high-fidelity deterministic quantum logic gates on dual-rail encoded photonic qubits.
We show that III-V quantum dots in GaAs membranes is a promising platform for photonic quantum information processing.
arXiv Detail & Related papers (2021-10-06T18:00:00Z) - Photon pumping in a weakly-driven quantum cavity-spin system [0.0]
In the strong-drive adiabatic limit, a quantized frequency conversion of photons is expected as the temporal analog of the Hall current.
We numerically establish a novel photon pumping phenomenon in the experimentally accessible nonadiabatic driving regime.
arXiv Detail & Related papers (2021-04-13T18:00:02Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Robust-fidelity hyperparallel controlled-phase-flip gate through
microcavities [0.0]
Hyperparallel quantum information processing outperforms its traditional parallel one in terms of channel capacity, low loss rate, and processing speed.
We present a way for implementing a robust hyper-parallel optical controlled-phase-flip gate through microcavities.
arXiv Detail & Related papers (2020-08-01T13:02:24Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.