Technical Report: Adaptive Control for Linearizable Systems Using
On-Policy Reinforcement Learning
- URL: http://arxiv.org/abs/2004.02766v1
- Date: Mon, 6 Apr 2020 15:50:31 GMT
- Title: Technical Report: Adaptive Control for Linearizable Systems Using
On-Policy Reinforcement Learning
- Authors: Tyler Westenbroek, Eric Mazumdar, David Fridovich-Keil, Valmik Prabhu,
Claire J. Tomlin and S. Shankar Sastry
- Abstract summary: This paper proposes a framework for adaptively learning a feedback linearization-based tracking controller for an unknown system.
It does not require the learned inverse model to be invertible at all instances of time.
A simulated example of a double pendulum demonstrates the utility of the proposed theory.
- Score: 41.24484153212002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a framework for adaptively learning a feedback
linearization-based tracking controller for an unknown system using
discrete-time model-free policy-gradient parameter update rules. The primary
advantage of the scheme over standard model-reference adaptive control
techniques is that it does not require the learned inverse model to be
invertible at all instances of time. This enables the use of general function
approximators to approximate the linearizing controller for the system without
having to worry about singularities. However, the discrete-time and stochastic
nature of these algorithms precludes the direct application of standard
machinery from the adaptive control literature to provide deterministic
stability proofs for the system. Nevertheless, we leverage these techniques
alongside tools from the stochastic approximation literature to demonstrate
that with high probability the tracking and parameter errors concentrate near
zero when a certain persistence of excitation condition is satisfied. A
simulated example of a double pendulum demonstrates the utility of the proposed
theory. 1
Related papers
- Non-Stationary Learning of Neural Networks with Automatic Soft Parameter Reset [98.52916361979503]
We introduce a novel learning approach that automatically models and adapts to non-stationarity.
We show empirically that our approach performs well in non-stationary supervised and off-policy reinforcement learning settings.
arXiv Detail & Related papers (2024-11-06T16:32:40Z) - Adaptive Robust Model Predictive Control via Uncertainty Cancellation [25.736296938185074]
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics.
We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws.
arXiv Detail & Related papers (2022-12-02T18:54:23Z) - Learning Stochastic Parametric Differentiable Predictive Control
Policies [2.042924346801313]
We present a scalable alternative called parametric differentiable predictive control (SP-DPC) for unsupervised learning of neural control policies.
SP-DPC is formulated as a deterministic approximation to the parametric constrained optimal control problem.
We provide theoretical probabilistic guarantees for policies learned via the SP-DPC method on closed-loop constraints and chance satisfaction.
arXiv Detail & Related papers (2022-03-02T22:46:32Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - A Theoretical Overview of Neural Contraction Metrics for Learning-based
Control with Guaranteed Stability [7.963506386866862]
This paper presents a neural network model of an optimal contraction metric and corresponding differential Lyapunov function.
Its innovation lies in providing formal robustness guarantees for learning-based control frameworks.
arXiv Detail & Related papers (2021-10-02T00:28:49Z) - Adaptive Robust Model Predictive Control with Matched and Unmatched
Uncertainty [28.10549712956161]
We propose a learning-based robust predictive control algorithm that can handle large uncertainty in the dynamics for a class of discrete-time systems.
Motivated by an inability of existing learning-based predictive control algorithms to achieve safety guarantees in the presence of uncertainties of large magnitude, we achieve significant performance improvements.
arXiv Detail & Related papers (2021-04-16T17:47:02Z) - Policy Analysis using Synthetic Controls in Continuous-Time [101.35070661471124]
Counterfactual estimation using synthetic controls is one of the most successful recent methodological developments in causal inference.
We propose a continuous-time alternative that models the latent counterfactual path explicitly using the formalism of controlled differential equations.
arXiv Detail & Related papers (2021-02-02T16:07:39Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Learning Constrained Adaptive Differentiable Predictive Control Policies
With Guarantees [1.1086440815804224]
We present differentiable predictive control (DPC), a method for learning constrained neural control policies for linear systems.
We employ automatic differentiation to obtain direct policy gradients by backpropagating the model predictive control (MPC) loss function and constraints penalties through a differentiable closed-loop system dynamics model.
arXiv Detail & Related papers (2020-04-23T14:24:44Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.