Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics
- URL: http://arxiv.org/abs/2011.07183v2
- Date: Tue, 23 Mar 2021 07:50:29 GMT
- Title: Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics
- Authors: Fernando Casta\~neda, Jason J. Choi, Bike Zhang, Claire J. Tomlin and
Koushil Sreenath
- Abstract summary: We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
- Score: 90.81186513537777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a method to design a min-norm Control Lyapunov Function
(CLF)-based stabilizing controller for a control-affine system with uncertain
dynamics using Gaussian Process (GP) regression. In order to estimate both
state and input-dependent model uncertainty, we propose a novel compound kernel
that captures the control-affine nature of the problem. Furthermore, by the use
of GP Upper Confidence Bound analysis, we provide probabilistic bounds of the
regression error, leading to the formulation of a CLF-based stability chance
constraint which can be incorporated in a min-norm optimization problem. We
show that this resulting optimization problem is convex, and we call it
Gaussian Process-based Control Lyapunov Function Second-Order Cone Program
(GP-CLF-SOCP). The data-collection process and the training of the GP
regression model are carried out in an episodic learning fashion. We validate
the proposed algorithm and controller in numerical simulations of an inverted
pendulum and a kinematic bicycle model, resulting in stable trajectories which
are very similar to the ones obtained if we actually knew the true plant
dynamics.
Related papers
- Real-Time Adaptive Safety-Critical Control with Gaussian Processes in
High-Order Uncertain Models [14.790031018404942]
This paper presents an adaptive online learning framework for systems with uncertain parameters.
We first integrate a forgetting factor to refine a variational sparse GP algorithm.
In the second phase, we propose a safety filter based on high-order control barrier functions.
arXiv Detail & Related papers (2024-02-29T08:25:32Z) - Sub-linear Regret in Adaptive Model Predictive Control [56.705978425244496]
We present STT-MPC (Self-Tuning Tube-based Model Predictive Control), an online oracle that combines the certainty-equivalence principle and polytopic tubes.
We analyze the regret of the algorithm, when compared to an algorithm initially aware of the system dynamics.
arXiv Detail & Related papers (2023-10-07T15:07:10Z) - Neural Lyapunov Differentiable Predictive Control [2.042924346801313]
We present a learning-based predictive control methodology using the differentiable programming framework with probabilistic Lyapunov-based stability guarantees.
In conjunction, our approach jointly learns a Lyapunov function that certifies the regions of state-space with stable dynamics.
arXiv Detail & Related papers (2022-05-22T03:52:27Z) - Reliably-stabilizing piecewise-affine neural network controllers [5.203329540700177]
A common problem affecting neural network (NN) approximations of model predictive control (MPC) policies is the lack of analytical tools to assess the stability of the closed-loop system under the action of the NN-based controller.
We present a general procedure to quantify the performance of such a controller, or to design minimum complexity NNs that preserve the desirable properties of a given MPC scheme.
arXiv Detail & Related papers (2021-11-13T20:01:43Z) - Hybrid Gaussian Process Modeling Applied to Economic Stochastic Model
Predictive Control of Batch Processes [0.0]
Plant models can often be determined from first principles, parts of the model are difficult to derive using physical laws alone.
This paper exploits GPs to model the parts of the dynamic system that are difficult to describe using first principles.
It is vital to account for this uncertainty in the control algorithm, to prevent constraint violations and performance deterioration.
arXiv Detail & Related papers (2021-08-14T00:01:42Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.