Microscopic Relaxation Channels in Materials for Superconducting Qubits
- URL: http://arxiv.org/abs/2004.02908v1
- Date: Mon, 6 Apr 2020 18:01:15 GMT
- Title: Microscopic Relaxation Channels in Materials for Superconducting Qubits
- Authors: Anjali Premkumar, Conan Weiland, Sooyeon Hwang, Berthold Jaeck,
Alexander P.M. Place, Iradwikanari Waluyo, Adrian Hunt, Valentina Bisogni,
Jonathan Pelliciari, Andi Barbour, Mike S. Miller, Paola Russo, Fernando
Camino, Kim Kisslinger, Xiao Tong, Mark S. Hybertsen, Andrew A. Houck, Ignace
Jarrige
- Abstract summary: We show correlations between $T_$ and grain size, enhanced oxygen diffusion along grain boundaries, and concentration of suboxides near the surface.
Physical mechanisms connect these microscopic properties to residual surface resistance and $T_$ through losses arising from the grain boundaries and from defects in the suboxides.
This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.
- Score: 76.84500123816078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite mounting evidence that materials imperfections are a major obstacle
to practical applications of superconducting qubits, connections between
microscopic material properties and qubit coherence are poorly understood.
Here, we perform measurements of transmon qubit relaxation times $T_1$ in
parallel with spectroscopy and microscopy of the thin polycrystalline niobium
films used in qubit fabrication. By comparing results for films deposited using
three techniques, we reveal correlations between $T_1$ and grain size, enhanced
oxygen diffusion along grain boundaries, and the concentration of suboxides
near the surface. Physical mechanisms connect these microscopic properties to
residual surface resistance and $T_1$ through losses arising from the grain
boundaries and from defects in the suboxides. Further, experiments show that
the residual resistance ratio can be used as a figure of merit for qubit
lifetime. This comprehensive approach to understanding qubit decoherence charts
a pathway for materials-driven improvements of superconducting qubit
performance.
Related papers
- Mitigation of interfacial dielectric loss in aluminum-on-silicon
superconducting qubits [0.0]
We demonstrate aluminum-on-Silicon planar transmon qubits with time-averaged energy relaxation times of up to $270,mu s$, corresponding to Q = 5 million, and a highest observed value of $501,mu s$.
The mitigation of loss is achieved by reducing the presence of oxide, a known host of defects, near the substrate-metal interface.
arXiv Detail & Related papers (2023-10-10T17:08:59Z) - Systematic Improvements in Transmon Qubit Coherence Enabled by Niobium
Surface Encapsulation [25.617374322523048]
We present a novel transmon qubit fabrication technique that yields systematic improvements in relaxation times.
We fabricate devices using an encapsulation strategy that involves passivating the surface of niobium.
arXiv Detail & Related papers (2023-04-26T02:59:28Z) - Developing a Chemical and Structural Understanding of the Surface Oxide
in a Niobium Superconducting Qubit [46.6940373636939]
We conduct a detailed assessment of the surface oxide that forms in ambient conditions for transmon test devices patterned from a niobium film.
In terms of structural analysis, we find that the Nb$ 1-2$O$_5$ region is semicrystalline in nature.
We observe that amorphous regions are more likely to contain oxygen vacancies and exhibit weaker bonds between the niobium and oxygen atoms.
arXiv Detail & Related papers (2022-03-16T16:00:57Z) - Ternary Metal Oxide Substrates for Superconducting Circuits [65.60958948226929]
Substrate material imperfections and surface losses are one of the major factors limiting superconducting quantum circuitry from reaching the scale and complexity required to build a practicable quantum computer.
Here, we examine two ternary metal oxide materials, spinel (MgAl2O4) and lanthanum aluminate (LaAlO3), with a focus on surface and interface characterization and preparation.
arXiv Detail & Related papers (2022-01-17T06:10:15Z) - Microscopic Theory of Magnetic Disorder-Induced Decoherence in
Superconducting Nb Films [0.0]
We develop an ab initio Shiba theory to investigate the microscopic origin of magnetic-induced decoherence in niobium thin film superconductors.
Our ab initio calculations encompass the roles of structural disorder, stoichiometry, and strain on the formation of decoherence-inducing local spin moments.
arXiv Detail & Related papers (2021-11-23T07:08:20Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.