Adaptive Fractional Dilated Convolution Network for Image Aesthetics
Assessment
- URL: http://arxiv.org/abs/2004.03015v1
- Date: Mon, 6 Apr 2020 21:56:29 GMT
- Title: Adaptive Fractional Dilated Convolution Network for Image Aesthetics
Assessment
- Authors: Qiuyu Chen, Wei Zhang, Ning Zhou, Peng Lei, Yi Xu, Yu Zheng, Jianping
Fan
- Abstract summary: An adaptive fractional dilated convolution (AFDC) is developed to tackle this issue in convolutional kernel level.
We provide a concise formulation for mini-batch training and utilize a grouping strategy to reduce computational overhead.
Our experimental results demonstrate that our proposed method achieves state-of-the-art performance on image aesthetics assessment over the AVA dataset.
- Score: 33.945579916184364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To leverage deep learning for image aesthetics assessment, one critical but
unsolved issue is how to seamlessly incorporate the information of image aspect
ratios to learn more robust models. In this paper, an adaptive fractional
dilated convolution (AFDC), which is aspect-ratio-embedded,
composition-preserving and parameter-free, is developed to tackle this issue
natively in convolutional kernel level. Specifically, the fractional dilated
kernel is adaptively constructed according to the image aspect ratios, where
the interpolation of nearest two integers dilated kernels is used to cope with
the misalignment of fractional sampling. Moreover, we provide a concise
formulation for mini-batch training and utilize a grouping strategy to reduce
computational overhead. As a result, it can be easily implemented by common
deep learning libraries and plugged into popular CNN architectures in a
computation-efficient manner. Our experimental results demonstrate that our
proposed method achieves state-of-the-art performance on image aesthetics
assessment over the AVA dataset.
Related papers
- Image-level Regression for Uncertainty-aware Retinal Image Segmentation [3.7141182051230914]
We introduce a novel Uncertainty-Aware (SAUNA) transform, which adds pixel uncertainty to the ground truth.
Our results indicate that the integration of the SAUNA transform and these segmentation losses led to significant performance boosts for different segmentation models.
arXiv Detail & Related papers (2024-05-27T04:17:10Z) - Transformer-based Clipped Contrastive Quantization Learning for
Unsupervised Image Retrieval [15.982022297570108]
Unsupervised image retrieval aims to learn the important visual characteristics without any given level to retrieve the similar images for a given query image.
In this paper, we propose a TransClippedCLR model by encoding the global context of an image using Transformer having local context through patch based processing.
Results using the proposed clipped contrastive learning are greatly improved on all datasets as compared to same backbone network with vanilla contrastive learning.
arXiv Detail & Related papers (2024-01-27T09:39:11Z) - PairingNet: A Learning-based Pair-searching and -matching Network for
Image Fragments [6.694162736590122]
We propose a learning-based image fragment pair-searching and -matching approach to solve the challenging restoration problem.
Our proposed network achieves excellent pair-searching accuracy, reduces matching errors, and significantly reduces computational time.
arXiv Detail & Related papers (2023-12-14T07:43:53Z) - DELAD: Deep Landweber-guided deconvolution with Hessian and sparse prior [0.22940141855172028]
We present a model for non-blind image deconvolution that incorporates the classic iterative method into a deep learning application.
We build our network based on the iterative Landweber deconvolution algorithm, which is integrated with trainable convolutional layers to enhance the recovered image structures and details.
arXiv Detail & Related papers (2022-09-30T11:15:03Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
In this issue, we propose a novel image-specific convolutional modulation kernel (IKM)
We exploit the global contextual information of image or feature to generate an attention weight for adaptively modulating the convolutional kernels.
Experiments on single image super-resolution show that the proposed methods achieve superior performances over state-of-the-art methods.
arXiv Detail & Related papers (2021-11-16T11:05:10Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.