Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond
- URL: http://arxiv.org/abs/2004.14557v4
- Date: Thu, 30 Sep 2021 01:12:11 GMT
- Title: Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond
- Authors: Risheng Liu, Zi Li, Xin Fan, Chenying Zhao, Hao Huang and Zhongxuan
Luo
- Abstract summary: We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
- Score: 62.730497582218284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional deformable registration methods aim at solving an optimization
model carefully designed on image pairs and their computational costs are
exceptionally high. In contrast, recent deep learning based approaches can
provide fast deformation estimation. These heuristic network architectures are
fully data-driven and thus lack explicit geometric constraints, e.g.,
topology-preserving, which are indispensable to generate plausible
deformations. We design a new deep learning based framework to optimize a
diffeomorphic model via multi-scale propagation in order to integrate
advantages and avoid limitations of these two categories of approaches.
Specifically, we introduce a generic optimization model to formulate
diffeomorphic registration and develop a series of learnable architectures to
obtain propagative updating in the coarse-to-fine feature space. Moreover, we
propose a novel bilevel self-tuned training strategy, allowing efficient search
of task-specific hyper-parameters. This training strategy increases the
flexibility to various types of data while reduces computational and human
burdens. We conduct two groups of image registration experiments on 3D volume
datasets including image-to-atlas registration on brain MRI data and
image-to-image registration on liver CT data. Extensive results demonstrate the
state-of-the-art performance of the proposed method with diffeomorphic
guarantee and extreme efficiency. We also apply our framework to challenging
multi-modal image registration, and investigate how our registration to support
the down-streaming tasks for medical image analysis including multi-modal
fusion and image segmentation.
Related papers
- Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
We propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation.
We also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network.
arXiv Detail & Related papers (2023-02-23T06:16:15Z) - Deep Learning for Material Decomposition in Photon-Counting CT [0.5801044612920815]
We present a novel deep-learning solution for material decomposition in PCCT, based on an unrolled/unfolded iterative network.
Our approach outperforms a maximum likelihood estimation, a variational method, as well as a fully-learned network.
arXiv Detail & Related papers (2022-08-05T19:05:16Z) - A training-free recursive multiresolution framework for diffeomorphic
deformable image registration [6.929709872589039]
We propose a novel diffeomorphic training-free approach for deformable image registration.
The proposed architecture is simple in design. The moving image is warped successively at each resolution and finally aligned to the fixed image.
The entire system is end-to-end and optimized for each pair of images from scratch.
arXiv Detail & Related papers (2022-02-01T15:17:17Z) - Stochastic Planner-Actor-Critic for Unsupervised Deformable Image
Registration [33.72954116727303]
We present a novel reinforcement learning-based framework that performs step-wise registration of medical images with large deformations.
We evaluate our method on several 2D and 3D medical image datasets, some of which contain large deformations.
arXiv Detail & Related papers (2021-12-14T14:08:56Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
We present a novel approach of diffusion model-based probabilistic image registration, called DiffuseMorph.
Our model learns the score function of the deformation between moving and fixed images.
Our method can provide flexible and accurate deformation with a capability of topology preservation.
arXiv Detail & Related papers (2021-12-09T08:41:23Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
In this issue, we propose a novel image-specific convolutional modulation kernel (IKM)
We exploit the global contextual information of image or feature to generate an attention weight for adaptively modulating the convolutional kernels.
Experiments on single image super-resolution show that the proposed methods achieve superior performances over state-of-the-art methods.
arXiv Detail & Related papers (2021-11-16T11:05:10Z) - Deformable Image Registration using Neural ODEs [15.245085400790002]
We present a generic, fast, and accurate diffeomorphic image registration framework that leverages neural ordinary differential equations (NODEs)
Compared with traditional optimization-based methods, our framework reduces the running time from tens of minutes to tens of seconds.
Our experiments show that the registration results of our method outperform state-of-the-arts under various metrics.
arXiv Detail & Related papers (2021-08-07T12:54:17Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.