論文の概要: Interview: A Large-Scale Open-Source Corpus of Media Dialog
- arxiv url: http://arxiv.org/abs/2004.03090v1
- Date: Tue, 7 Apr 2020 02:44:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 23:39:14.250991
- Title: Interview: A Large-Scale Open-Source Corpus of Media Dialog
- Title(参考訳): インタビュー:メディアダイアログの大規模オープンソースコーパス
- Authors: Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, Julian McAuley
- Abstract要約: 本稿では,ニュースインタビューの書き起こしから収集した大規模(105Kの会話)メディアダイアログデータセット「Interview」を紹介する。
既存の会話データに対する大規模プロキシと比較して、我々のデータセットでトレーニングされた言語モデルは、ドメイン外のゼロショットのパフォーマンスが向上する。
「インタービュー」には各ターンの話者ロールアノテーションが含まれており、エンゲージメント・レスポンシブ・ダイアログシステムの開発を容易にする。
- 参考スコア(独自算出の注目度): 11.28504775964698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing conversational datasets consist either of written proxies for dialog
or small-scale transcriptions of natural speech. We introduce 'Interview': a
large-scale (105K conversations) media dialog dataset collected from news
interview transcripts. Compared to existing large-scale proxies for
conversational data, language models trained on our dataset exhibit better
zero-shot out-of-domain performance on existing spoken dialog datasets,
demonstrating its usefulness in modeling real-world conversations. 'Interview'
contains speaker role annotations for each turn, facilitating the development
of engaging, responsive dialog systems. In fact, experiments on two dialog
tasks show that leveraging such labels improves performance over strong
speaker-agnostic baselines, and enabling models to generate more specific and
inquisitive responses in interview-style conversations.
- Abstract(参考訳): 既存の会話データセットは、対話のための書かれたプロキシか、あるいは自然言語の小規模な書き起こしからなる。
ニュースインタビューの書き起こしから収集した大規模(105k会話)メディアダイアログデータセットである「interview」を紹介する。
対話型データのための既存の大規模プロキシと比較して、データセットでトレーニングされた言語モデルは、既存の対話型データセット上でのゼロショットアウトオブドメインのパフォーマンスを示し、実世界の会話のモデリングにその有用性を示しています。
「インタービュー」には各ターンの話者ロールアノテーションが含まれており、エンゲージメント・レスポンシブ・ダイアログシステムの開発を容易にする。
実際、2つのダイアログタスクの実験では、そのようなラベルを活用することで、強い話者非依存のベースラインよりもパフォーマンスが向上し、モデルがインタビュースタイルの会話においてより具体的で好ましくない応答を生成できることが示されている。
関連論文リスト
- Let's Go Real Talk: Spoken Dialogue Model for Face-to-Face Conversation [55.043492250775294]
本稿では,新しい対面音声対話モデルを提案する。
ユーザ入力から音声視覚音声を処理し、応答として音声視覚音声を生成する。
また,最初の大規模マルチモーダル音声対話コーパスであるMultiDialogを紹介する。
論文 参考訳(メタデータ) (2024-06-12T04:48:36Z) - MP2D: An Automated Topic Shift Dialogue Generation Framework Leveraging
Knowledge Graphs [15.876075659237722]
Multi-Passage to Dialogue (MP2D) は、自然なトピック遷移を伴う質問応答データセットを生成する。
MP2Dは対話内のトピックの流れをマッピングし、人間の会話のダイナミクスを効果的に反映する。
本研究では,トピックシフト対話のための新しいベンチマークTS-WikiDialogを紹介する。
論文 参考訳(メタデータ) (2024-03-09T06:28:48Z) - DialogStudio: Towards Richest and Most Diverse Unified Dataset
Collection for Conversational AI [92.29874802394167]
DialogStudioは対話データセットの最大かつ最も多様なコレクションである。
本コレクションは,オープンドメイン対話,タスク指向対話,自然言語理解,対話レコメンデーション,対話要約,知識基底対話などのデータを含む。
論文 参考訳(メタデータ) (2023-07-19T17:57:53Z) - SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented
Dialogue Agents [72.42049370297849]
SpokenWOZは音声TODのための大規模音声テキストデータセットである。
SpokenWOZでは、クロスターンスロットと推論スロット検出が新たな課題である。
論文 参考訳(メタデータ) (2023-05-22T13:47:51Z) - SuperDialseg: A Large-scale Dataset for Supervised Dialogue Segmentation [55.82577086422923]
文書地上対話の助けを借りて,対話のセグメンテーションポイントを実現可能な定義を提供する。
我々は,9,478の対話を含むSuperDialsegと呼ばれる大規模教師付きデータセットをリリースする。
また、対話セグメンテーションタスクの5つのカテゴリにまたがる18のモデルを含むベンチマークも提供する。
論文 参考訳(メタデータ) (2023-05-15T06:08:01Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - What Helps Transformers Recognize Conversational Structure? Importance
of Context, Punctuation, and Labels in Dialog Act Recognition [41.1669799542627]
2つの事前訓練されたトランスフォーマーモデルを適用し、対話行動のシーケンスとして会話文を構造化する。
より広範な会話コンテキストが組み込まれていることは、多くの対話行動クラスを曖昧にするのに役立ちます。
詳細な分析により、その欠如で観察された特定のセグメンテーションパターンが明らかになる。
論文 参考訳(メタデータ) (2021-07-05T21:56:00Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
マルチターンダイアログでは、発話が文の完全な形を取るとは限らない。
読み解きの質問に答えるモデルの能力を検討し、応答生成性能の向上を提案する。
論文 参考訳(メタデータ) (2020-12-14T10:58:01Z) - RiSAWOZ: A Large-Scale Multi-Domain Wizard-of-Oz Dataset with Rich
Semantic Annotations for Task-Oriented Dialogue Modeling [35.75880078666584]
RiSAWOZ は、Rich Semantic s を用いた大規模マルチドメインの Chinese Wizard-of-Oz データセットである。
11.2Kのヒューマン・ツー・ヒューマン(H2H)マルチターン・アノテート・ダイアログを含み、12ドメインにまたがる150K以上の発話がある。
論文 参考訳(メタデータ) (2020-10-17T08:18:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。