論文の概要: Generalized Label Enhancement with Sample Correlations
- arxiv url: http://arxiv.org/abs/2004.03104v3
- Date: Mon, 12 Apr 2021 02:47:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 22:35:06.457564
- Title: Generalized Label Enhancement with Sample Correlations
- Title(参考訳): サンプル相関を用いた一般化ラベル強調
- Authors: Qinghai Zheng, Jihua Zhu, Haoyu Tang, Xinyuan Liu, Zhongyu Li, and
Huimin Lu
- Abstract要約: サンプル相関付きラベル拡張(LESC)と、サンプル相関付きラベル拡張(gLESC)の2つの新しいラベル拡張手法を提案する。
サンプル相関から,提案手法はラベル強化性能を向上させることができる。
- 参考スコア(独自算出の注目度): 24.582764493585362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, label distribution learning (LDL) has drawn much attention in
machine learning, where LDL model is learned from labelel instances. Different
from single-label and multi-label annotations, label distributions describe the
instance by multiple labels with different intensities and accommodate to more
general scenes. Since most existing machine learning datasets merely provide
logical labels, label distributions are unavailable in many real-world
applications. To handle this problem, we propose two novel label enhancement
methods, i.e., Label Enhancement with Sample Correlations (LESC) and
generalized Label Enhancement with Sample Correlations (gLESC). More
specifically, LESC employs a low-rank representation of samples in the feature
space, and gLESC leverages a tensor multi-rank minimization to further
investigate the sample correlations in both the feature space and label space.
Benefitting from the sample correlations, the proposed methods can boost the
performance of label enhancement. Extensive experiments on 14 benchmark
datasets demonstrate the effectiveness and superiority of our methods.
- Abstract(参考訳): 近年,ラベル分散学習(LDL)は,ラベルインスタンスからLDLモデルを学習する機械学習において大きな注目を集めている。
シングルラベルとマルチラベルアノテーションとは異なり、ラベルディストリビューションはインスタンスを異なる強度を持つ複数のラベルで表現し、より一般的なシーンに対応している。
既存の機械学習データセットの多くは単に論理ラベルを提供するため、ラベル分布は多くの現実世界のアプリケーションでは利用できない。
この問題に対処するため,新たなラベル拡張手法として,ラベル拡張とサンプル相関(LESC),一般化ラベル拡張とサンプル相関(gLESC)を提案する。
より具体的には、lescは特徴空間におけるサンプルの低ランク表現を使い、glescはテンソル多ランク最小化を利用して、特徴空間とラベル空間の両方におけるサンプル相関をさらに調査する。
サンプル相関の利点により,提案手法はラベル強調の性能を高めることができる。
14のベンチマークデータセットに対する大規模な実験は、我々の方法の有効性と優位性を示している。
関連論文リスト
- Incremental Label Distribution Learning with Scalable Graph Convolutional Networks [41.02170058889797]
本稿では,ILDL(Incrmental Label Distribution Learning)を導入し,トレーニングサンプルとラベル間関係に関する重要な課題を分析した。
具体的には、新しいラベルの学習を高速化し、ラベル間の関係をグラフとして表現する、新しいラベル対応のグラディエント補償損失を開発する。
論文 参考訳(メタデータ) (2024-11-20T07:49:51Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
本稿では,ラベルの修正を伴わずに,混乱したサンプルを積極的に使用することを提案する。
仮想カテゴリー(VC)は、モデルの最適化に安全に貢献できるように、各混乱したサンプルに割り当てられる。
私たちの興味深い発見は、密集した視覚タスクにおけるVC学習の利用に注目しています。
論文 参考訳(メタデータ) (2023-12-02T16:23:52Z) - Scalable Label Distribution Learning for Multi-Label Classification [43.52928088881866]
マルチラベル分類(MLC、Multi-label classification)とは、あるインスタンスに関連ラベルのセットをタグ付けする問題を指す。
既存のMLC法の多くは、ラベルペア内の2つのラベルの相関が対称であるという仮定に基づいている。
既存のほとんどの手法はラベル数に関連する学習プロセスを設計しており、大規模な出力空間にスケールアップする際の計算複雑性をボトルネックにしている。
論文 参考訳(メタデータ) (2023-11-28T06:52:53Z) - Channel-Wise Contrastive Learning for Learning with Noisy Labels [60.46434734808148]
チャネルワイド・コントラッシブ・ラーニング(CWCL)を導入し,真正なラベル情報とノイズを区別する。
従来のインスタンス単位のコントラスト学習(IWCL)とは異なり、CWCLはよりニュアンスでレジリエントな特徴を真のラベルと一致させる傾向にある。
まずCWCLを用いて、クリーンにラベル付けされたサンプルを識別し、次に、これらのサンプルを段階的に微調整する。
論文 参考訳(メタデータ) (2023-08-14T06:04:50Z) - Contrastive Label Enhancement [13.628665406039609]
コントラスト学習戦略により高次特徴を生成するコントラストラベル拡張(Contrastive Label Enhancement, ConLE)を提案する。
得られた高レベルな特徴を活用し、よく設計されたトレーニング戦略によりラベル分布を得る。
論文 参考訳(メタデータ) (2023-05-16T14:53:07Z) - Enhancing Label Sharing Efficiency in Complementary-Label Learning with
Label Augmentation [92.4959898591397]
学習中に近隣の事例における補完ラベルの暗黙的な共有を分析した。
相補的なラベル拡張による共有効率を向上させる新しい手法を提案する。
実験結果から,従来のCLLモデルよりも相補的ラベル拡張により経験的性能が向上することが確認された。
論文 参考訳(メタデータ) (2023-05-15T04:43:14Z) - Deep Partial Multi-Label Learning with Graph Disambiguation [27.908565535292723]
grAph-disambIguatioN (PLAIN) を用いた新しいディープ部分多重ラベルモデルを提案する。
具体的には、ラベルの信頼性を回復するために、インスタンスレベルとラベルレベルの類似性を導入する。
各トレーニングエポックでは、ラベルがインスタンスとラベルグラフに伝播し、比較的正確な擬似ラベルを生成する。
論文 参考訳(メタデータ) (2023-05-10T04:02:08Z) - Label distribution learning via label correlation grid [9.340734188957727]
ラベル関係の不確かさをモデル化するための textbfLabel textbfCorrelation textbfGrid (LCG) を提案する。
我々のネットワークはLCGを学習し、各インスタンスのラベル分布を正確に推定する。
論文 参考訳(メタデータ) (2022-10-15T03:58:15Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
本研究では,SPMLL (Single- positive multi-label learning) について検討した。
ラベルエンハンスメントを用いた単陽性MultIラベル学習という新しい手法を提案する。
ベンチマークデータセットの実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-06-01T14:26:30Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
部分ラベル学習は、典型的には弱教師付き学習問題である。
既存のほとんどのアプローチでは、トレーニングサンプルの間違ったラベルがランダムに候補ラベルとして選択されていると仮定している。
本稿では,各例が実数で構成された潜在ラベル分布と関連していると仮定する。
論文 参考訳(メタデータ) (2021-10-25T12:50:26Z) - An Empirical Study on Large-Scale Multi-Label Text Classification
Including Few and Zero-Shot Labels [49.036212158261215]
大規模なMulti-label Text Classification (LMTC) は、幅広い自然言語処理 (NLP) アプリケーションを持つ。
Label-Wise Attention Networks (LWANs) を用いた最新のLMTCモデル
確率的ラベル木(PLT)に基づく階層的手法がLWANより優れていることを示す。
BERTとLWANを組み合わせた最先端手法を提案する。
論文 参考訳(メタデータ) (2020-10-04T18:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。