論文の概要: Motion-supervised Co-Part Segmentation
- arxiv url: http://arxiv.org/abs/2004.03234v2
- Date: Wed, 15 Apr 2020 20:13:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-16 00:15:27.359143
- Title: Motion-supervised Co-Part Segmentation
- Title(参考訳): 運動制御コパートセグメンテーション
- Authors: Aliaksandr Siarohin, Subhankar Roy, St\'ephane Lathuili\`ere, Sergey
Tulyakov, Elisa Ricci and Nicu Sebe
- Abstract要約: 本稿では,コパートセグメンテーションのための自己教師型ディープラーニング手法を提案する。
提案手法は,映像から推定される動き情報を有効活用して意味のある物体の発見を可能にする。
- 参考スコア(独自算出の注目度): 88.40393225577088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent co-part segmentation methods mostly operate in a supervised learning
setting, which requires a large amount of annotated data for training. To
overcome this limitation, we propose a self-supervised deep learning method for
co-part segmentation. Differently from previous works, our approach develops
the idea that motion information inferred from videos can be leveraged to
discover meaningful object parts. To this end, our method relies on pairs of
frames sampled from the same video. The network learns to predict part segments
together with a representation of the motion between two frames, which permits
reconstruction of the target image. Through extensive experimental evaluation
on publicly available video sequences we demonstrate that our approach can
produce improved segmentation maps with respect to previous self-supervised
co-part segmentation approaches.
- Abstract(参考訳): 最近のコパートセグメンテーション手法は、トレーニングのために大量の注釈データを必要とする教師付き学習設定で主に機能する。
この制限を克服するために,コパートセグメンテーションのための自己教師あり深層学習法を提案する。
従来の作品と異なるアプローチでは,映像から推定された動作情報を活用して意味のある物体を発見できる,という考え方を展開する。
この目的のために、本手法は同一ビデオからサンプリングされたフレームのペアに依存する。
ネットワークは、2つのフレーム間の動きの表現と共に部分セグメントを予測し、対象画像の再構成を可能にする。
公開ビデオシーケンスの広範な実験評価を通じて,従来の自己教師付きコパートセグメンテーションアプローチに対して,改良されたセグメンテーションマップを作成できることを実証する。
関連論文リスト
- Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - Part-level Action Parsing via a Pose-guided Coarse-to-Fine Framework [108.70949305791201]
パートレベルのアクションパーシング(PAP)は、ビデオレベルのアクションを予測するだけでなく、ビデオ内の各人に対するフレームレベルのきめ細かいアクションやインタラクションを認識することを目的としている。
特に,本フレームワークは,まず入力ビデオの映像レベルのクラスを予測し,次に身体部位をローカライズし,部分レベルの動作を予測する。
我々のフレームワークは最先端のパフォーマンスを達成し、既存の手法を31.10%のROCスコアで上回ります。
論文 参考訳(メタデータ) (2022-03-09T01:30:57Z) - The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos [59.12750806239545]
動画は移動成分によって同じシーンを異なる視点で見ることができ、適切な領域分割と領域フローは相互のビュー合成を可能にする。
モデルでは,1枚の画像に対して特徴に基づく領域分割を出力する出現経路と,1枚の画像に対して動作特徴を出力する動き経路の2つの経路から開始する。
セグメントフローに基づく視線合成誤差を最小限に抑えるためにモデルを訓練することにより、我々の外観経路と運動経路は、それぞれ低レベルのエッジや光フローから構築することなく、領域のセグメンテーションとフロー推定を自動的に学習する。
論文 参考訳(メタデータ) (2021-11-11T18:59:11Z) - A Survey on Deep Learning Technique for Video Segmentation [147.0767454918527]
ビデオセグメンテーションは幅広い応用において重要な役割を果たしている。
ディープラーニングベースのアプローチは、ビデオセグメンテーションに特化しており、魅力的なパフォーマンスを提供している。
論文 参考訳(メタデータ) (2021-07-02T15:51:07Z) - Unsupervised Co-part Segmentation through Assembly [42.874278526843305]
画像からのコパートセグメンテーションのための教師なし学習手法を提案する。
我々はビデオに埋め込まれた動作情報を活用し、意味のある対象をセグメント化する潜在表現を明示的に抽出する。
提案手法は,多種多様なベンチマークにおける最先端のアプローチよりも優れた,有意義でコンパクトな部分分割を実現することができることを示す。
論文 参考訳(メタデータ) (2021-06-10T16:22:53Z) - Unsupervised Action Segmentation with Self-supervised Feature Learning
and Co-occurrence Parsing [32.66011849112014]
時間的アクションセグメンテーションは、ビデオの各フレームをアクションラベルで分類するタスクである。
本研究では,ラベル付けされていないビデオのコーパスで動作する自己教師型手法を探索し,ビデオ全体にわたる時間的セグメントのセットを予測する。
我々は,行動の構造に基づくサブアクション間の相関を捉えるだけでなく,そのサブアクションの時間的軌跡を正確かつ一般的な方法で推定する,新しい共起動作解析アルゴリズムであるCAPを開発した。
論文 参考訳(メタデータ) (2021-05-29T00:29:40Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。