Cascaded Refinement Network for Point Cloud Completion
- URL: http://arxiv.org/abs/2004.03327v3
- Date: Fri, 5 Jun 2020 14:45:49 GMT
- Title: Cascaded Refinement Network for Point Cloud Completion
- Authors: Xiaogang Wang, Marcelo H Ang Jr, Gim Hee Lee
- Abstract summary: We propose a cascaded refinement network together with a coarse-to-fine strategy to synthesize the detailed object shapes.
Considering the local details of partial input with the global shape information together, we can preserve the existing details in the incomplete point set.
We also design a patch discriminator that guarantees every local area has the same pattern with the ground truth to learn the complicated point distribution.
- Score: 74.80746431691938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point clouds are often sparse and incomplete. Existing shape completion
methods are incapable of generating details of objects or learning the complex
point distributions. To this end, we propose a cascaded refinement network
together with a coarse-to-fine strategy to synthesize the detailed object
shapes. Considering the local details of partial input with the global shape
information together, we can preserve the existing details in the incomplete
point set and generate the missing parts with high fidelity. We also design a
patch discriminator that guarantees every local area has the same pattern with
the ground truth to learn the complicated point distribution. Quantitative and
qualitative experiments on different datasets show that our method achieves
superior results compared to existing state-of-the-art approaches on the 3D
point cloud completion task. Our source code is available at
https://github.com/xiaogangw/cascaded-point-completion.git.
Related papers
- P2C: Self-Supervised Point Cloud Completion from Single Partial Clouds [44.02541315496045]
Point cloud completion aims to recover the complete shape based on a partial observation.
Existing methods require either complete point clouds or multiple partial observations of the same object for learning.
We present Partial2Complete, the first self-supervised framework that completes point cloud objects.
arXiv Detail & Related papers (2023-07-27T09:31:01Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - Voxel-based Network for Shape Completion by Leveraging Edge Generation [76.23436070605348]
We develop a voxel-based network for point cloud completion by leveraging edge generation (VE-PCN)
We first embed point clouds into regular voxel grids, and then generate complete objects with the help of the hallucinated shape edges.
This decoupled architecture together with a multi-scale grid feature learning is able to generate more realistic on-surface details.
arXiv Detail & Related papers (2021-08-23T05:10:29Z) - Variational Relational Point Completion Network [41.98957577398084]
Existing point cloud completion methods generate global shape skeletons and lack fine local details.
This paper proposes Variational point Completion network (VRCNet) with two appealing properties.
VRCNet shows greatizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2021-04-20T17:53:40Z) - PMP-Net: Point Cloud Completion by Learning Multi-step Point Moving
Paths [54.459879603473034]
We design a novel neural network, named PMP-Net, to mimic the behavior of an earth mover.
It moves each point of the incomplete input to complete the point cloud, where the total distance of point moving paths should be shortest.
It learns a strict and unique correspondence on point-level, which can capture the detailed topology and structure relationships between the incomplete shape and the complete target.
arXiv Detail & Related papers (2020-12-07T01:34:38Z) - Cascaded Refinement Network for Point Cloud Completion with
Self-supervision [74.80746431691938]
We introduce a two-branch network for shape completion.
The first branch is a cascaded shape completion sub-network to synthesize complete objects.
The second branch is an auto-encoder to reconstruct the original partial input.
arXiv Detail & Related papers (2020-10-17T04:56:22Z) - Point Cloud Completion by Skip-attention Network with Hierarchical
Folding [61.59710288271434]
We propose Skip-Attention Network (SA-Net) for 3D point cloud completion.
First, we propose a skip-attention mechanism to effectively exploit the local structure details of incomplete point clouds.
Second, in order to fully utilize the selected geometric information encoded by skip-attention mechanism at different resolutions, we propose a novel structure-preserving decoder.
arXiv Detail & Related papers (2020-05-08T06:23:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.