Voxel-based Network for Shape Completion by Leveraging Edge Generation
- URL: http://arxiv.org/abs/2108.09936v1
- Date: Mon, 23 Aug 2021 05:10:29 GMT
- Title: Voxel-based Network for Shape Completion by Leveraging Edge Generation
- Authors: Xiaogang Wang, Marcelo H Ang Jr and Gim Hee Lee
- Abstract summary: We develop a voxel-based network for point cloud completion by leveraging edge generation (VE-PCN)
We first embed point clouds into regular voxel grids, and then generate complete objects with the help of the hallucinated shape edges.
This decoupled architecture together with a multi-scale grid feature learning is able to generate more realistic on-surface details.
- Score: 76.23436070605348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning technique has yielded significant improvements in point cloud
completion with the aim of completing missing object shapes from partial
inputs. However, most existing methods fail to recover realistic structures due
to over-smoothing of fine-grained details. In this paper, we develop a
voxel-based network for point cloud completion by leveraging edge generation
(VE-PCN). We first embed point clouds into regular voxel grids, and then
generate complete objects with the help of the hallucinated shape edges. This
decoupled architecture together with a multi-scale grid feature learning is
able to generate more realistic on-surface details. We evaluate our model on
the publicly available completion datasets and show that it outperforms
existing state-of-the-art approaches quantitatively and qualitatively. Our
source code is available at https://github.com/xiaogangw/VE-PCN.
Related papers
- Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
We propose MAL-SPC, a framework that effectively leverages both object-level and category-specific geometric similarities to complete missing structures.
Our MAL-SPC does not require any 3D complete supervision and only necessitates a single partial point cloud for each object.
arXiv Detail & Related papers (2024-07-13T06:53:39Z) - Point Cloud Completion Guided by Prior Knowledge via Causal Inference [19.935868881427226]
We propose a novel approach to point cloud completion task called Point-PC.
Point-PC uses a memory network to retrieve shape priors and designs a causal inference model to filter missing shape information.
Experimental results on the ShapeNet-55, PCN, and KITTI datasets demonstrate that Point-PC outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-05-28T16:33:35Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
Vari point cloud completion methods tend to generate global shape skeletons hence lack fine local details.
This paper proposes a variational framework, point Completion Network (VRCNet) with two appealing properties.
VRCNet shows great generalizability and robustness on real-world point cloud scans.
arXiv Detail & Related papers (2023-04-18T17:03:20Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Point cloud completion on structured feature map with feedback network [28.710494879042002]
We propose FSNet, a feature structuring module that can adaptively aggregate point-wise features into a 2D structured feature map.
A 2D convolutional neural network is adopted to decode feature maps from FSNet into a coarse and complete point cloud.
A point cloud upsampling network is used to generate dense point cloud from the partial input and the coarse intermediate output.
arXiv Detail & Related papers (2022-02-17T10:59:40Z) - Graph-Guided Deformation for Point Cloud Completion [35.10606375236494]
We propose a Graph-Guided Deformation Network, which respectively regards the input data and intermediate generation as controlling and supporting points.
Our key insight is to simulate the least square Laplacian deformation process via mesh deformation methods, which brings adaptivity for modeling variation in geometry details.
We are the first to refine the point cloud completion task by mimicing traditional graphics algorithms with GCN-guided deformation.
arXiv Detail & Related papers (2021-11-11T12:55:26Z) - Cascaded Refinement Network for Point Cloud Completion with
Self-supervision [74.80746431691938]
We introduce a two-branch network for shape completion.
The first branch is a cascaded shape completion sub-network to synthesize complete objects.
The second branch is an auto-encoder to reconstruct the original partial input.
arXiv Detail & Related papers (2020-10-17T04:56:22Z) - Cascaded Refinement Network for Point Cloud Completion [74.80746431691938]
We propose a cascaded refinement network together with a coarse-to-fine strategy to synthesize the detailed object shapes.
Considering the local details of partial input with the global shape information together, we can preserve the existing details in the incomplete point set.
We also design a patch discriminator that guarantees every local area has the same pattern with the ground truth to learn the complicated point distribution.
arXiv Detail & Related papers (2020-04-07T13:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.