Two-Stage Resampling for Convolutional Neural Network Training in the
Imbalanced Colorectal Cancer Image Classification
- URL: http://arxiv.org/abs/2004.03332v2
- Date: Sat, 17 Apr 2021 13:44:04 GMT
- Title: Two-Stage Resampling for Convolutional Neural Network Training in the
Imbalanced Colorectal Cancer Image Classification
- Authors: Micha{\l} Koziarski
- Abstract summary: Data imbalance is one of the open challenges in the contemporary machine learning.
Traditional data-level approaches for dealing with data imbalance are ill-suited for image data.
We propose a novel two-stage resampling methodology to alleviate the problems associated with over- and undersampling.
- Score: 1.8275108630751844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data imbalance remains one of the open challenges in the contemporary machine
learning. It is especially prevalent in case of medical data, such as
histopathological images. Traditional data-level approaches for dealing with
data imbalance are ill-suited for image data: oversampling methods such as
SMOTE and its derivatives lead to creation of unrealistic synthetic
observations, whereas undersampling reduces the amount of available data,
critical for successful training of convolutional neural networks. To alleviate
the problems associated with over- and undersampling we propose a novel
two-stage resampling methodology, in which we initially use the oversampling
techniques in the image space to leverage a large amount of data for training
of a convolutional neural network, and afterwards apply undersampling in the
feature space to fine-tune the last layers of the network. Experiments
conducted on a colorectal cancer image dataset indicate the usefulness of the
proposed approach.
Related papers
- Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Convolutional Neural Network to Restore Low-Dose Digital Breast
Tomosynthesis Projections in a Variance Stabilization Domain [15.149874383250236]
convolution neural network (CNN) proposed to restore low-dose (LD) projections to image quality equivalent to a standard full-dose (FD) acquisition.
Network achieved superior results in terms of the mean squared error (MNSE), normalized training time and noise spatial correlation compared with networks trained with traditional data-driven methods.
arXiv Detail & Related papers (2022-03-22T13:31:47Z) - Few-shot Transfer Learning for Holographic Image Reconstruction using a
Recurrent Neural Network [0.30586855806896046]
We show a few-shot transfer learning method that helps a holographic image reconstruction deep neural network rapidly generalize to new types of samples using small datasets.
We validated the effectiveness of this approach by successfully generalizing to new types of samples using small holographic datasets for training.
arXiv Detail & Related papers (2022-01-27T05:51:36Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
We develop a novel framework that approximates the posterior distribution of the unknown image at each query observation.
It handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets.
arXiv Detail & Related papers (2021-10-22T10:02:48Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.