Convolutional Neural Networks based automated segmentation and labelling
of the lumbar spine X-ray
- URL: http://arxiv.org/abs/2004.03364v1
- Date: Sat, 4 Apr 2020 20:15:03 GMT
- Title: Convolutional Neural Networks based automated segmentation and labelling
of the lumbar spine X-ray
- Authors: Sandor Konya, Sai Natarajan T R, Hassan Allouch, Kais Abu Nahleh,
Omneya Yakout Dogheim, Heinrich Boehm
- Abstract summary: The aim of this study is to investigate the segmentation accuracies of different segmentation networks trained on 730 manually annotated lateral lumbar spine X-rays.
Instance segmentation networks were compared to semantic segmentation networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this study is to investigate the segmentation accuracies of
different segmentation networks trained on 730 manually annotated lateral
lumbar spine X-rays. Instance segmentation networks were compared to semantic
segmentation networks. The study cohort comprised diseased spines and
postoperative images with metallic implants. The average mean accuracy and mean
intersection over union (IoU) was up to 3 percent better for the best
performing instance segmentation model, the average pixel accuracy and weighted
IoU were slightly better for the best performing semantic segmentation model.
Moreover, the inferences of the instance segmentation models are easier to
implement for further processing pipelines in clinical decision support.
Related papers
- A Deep Learning Approach to Teeth Segmentation and Orientation from
Panoramic X-rays [1.7366868394060984]
We present a comprehensive approach to teeth segmentation and orientation from panoramic X-ray images, leveraging deep learning techniques.
We build our model based on FUSegNet, a popular model originally developed for wound segmentation.
We introduce oriented bounding box (OBB) generation through principal component analysis (PCA) for precise tooth orientation estimation.
arXiv Detail & Related papers (2023-10-26T06:01:25Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
This paper introduces an adversarial performance validation network into a 2D-to-3D segmentation framework.
The proposed network converts the 2D-coarse result to 3D high-quality segmentation masks in a coarse-to-fine manner, allowing joint optimization to improve segmentation accuracy.
Experiments on the NIH pancreas segmentation dataset demonstrate the proposed network achieves state-of-the-art accuracy on small organ segmentation and outperforms the previous best.
arXiv Detail & Related papers (2022-04-16T18:00:29Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z) - Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation [11.873435088539459]
We propose a 3D few shot segmentation framework for accurate organ segmentation using limited training samples of the target organ annotation.
A U-Net like network is designed to predict segmentation by learning the relationship between 2D slices of support data and a query image.
We evaluate our proposed model using three 3D CT datasets with annotations of different organs.
arXiv Detail & Related papers (2020-11-19T01:44:55Z) - Progressive Adversarial Semantic Segmentation [11.323677925193438]
Deep convolutional neural networks can perform exceedingly well given full supervision.
The success of such fully-supervised models for various image analysis tasks is limited to the availability of massive amounts of labeled data.
We propose a novel end-to-end medical image segmentation model, namely Progressive Adrial Semantic (PASS)
arXiv Detail & Related papers (2020-05-08T22:48:00Z) - Cross-stained Segmentation from Renal Biopsy Images Using Multi-level
Adversarial Learning [13.30545860115548]
We design a robust and flexible model for cross-stained segmentation.
It is able to improve segmentation performance on target type of stained images and use unlabeled data to achieve similar accuracy to labeled data.
arXiv Detail & Related papers (2020-02-20T06:49:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.