Multi-organ Segmentation Network with Adversarial Performance Validator
- URL: http://arxiv.org/abs/2204.07850v1
- Date: Sat, 16 Apr 2022 18:00:29 GMT
- Title: Multi-organ Segmentation Network with Adversarial Performance Validator
- Authors: Haoyu Fang, Yi Fang, Xiaofeng Yang
- Abstract summary: This paper introduces an adversarial performance validation network into a 2D-to-3D segmentation framework.
The proposed network converts the 2D-coarse result to 3D high-quality segmentation masks in a coarse-to-fine manner, allowing joint optimization to improve segmentation accuracy.
Experiments on the NIH pancreas segmentation dataset demonstrate the proposed network achieves state-of-the-art accuracy on small organ segmentation and outperforms the previous best.
- Score: 10.775440368500416
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: CT organ segmentation on computed tomography (CT) images becomes a
significant brick for modern medical image analysis, supporting clinic
workflows in multiple domains. Previous segmentation methods include 2D
convolution neural networks (CNN) based approaches, fed by CT image slices that
lack the structural knowledge in axial view, and 3D CNN-based methods with the
expensive computation cost in multi-organ segmentation applications. This paper
introduces an adversarial performance validation network into a 2D-to-3D
segmentation framework. The classifier and performance validator competition
contribute to accurate segmentation results via back-propagation. The proposed
network organically converts the 2D-coarse result to 3D high-quality
segmentation masks in a coarse-to-fine manner, allowing joint optimization to
improve segmentation accuracy. Besides, the structural information of one
specific organ is depicted by a statistics-meaningful prior bounding box, which
is transformed into a global feature leveraging the learning process in 3D fine
segmentation. The experiments on the NIH pancreas segmentation dataset
demonstrate the proposed network achieves state-of-the-art accuracy on small
organ segmentation and outperforms the previous best. High accuracy is also
reported on multi-organ segmentation in a dataset collected by ourselves.
Related papers
- Improved distinct bone segmentation in upper-body CT through
multi-resolution networks [0.39583175274885335]
In distinct bone segmentation from upper body CTs a large field of view and a computationally taxing 3D architecture are required.
This leads to low-resolution results lacking detail or localisation errors due to missing spatial context.
We propose end-to-end trainable segmentation networks that combine several 3D U-Nets working at different resolutions.
arXiv Detail & Related papers (2023-01-31T14:46:16Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Improved Abdominal Multi-Organ Segmentation via 3D Boundary-Constrained
Deep Neural Networks [9.416108287575915]
We train the 3D encoder-decoder network to simultaneously segment the abdominal organs and their corresponding boundaries in CT scans.
We evaluate the utilization of complementary boundary prediction task in improving the abdominal multi-organ segmentation.
arXiv Detail & Related papers (2022-10-09T15:31:19Z) - Unsupervised Domain Adaptation through Shape Modeling for Medical Image
Segmentation [23.045760366698634]
We aim at modeling shape explicitly and using it to help medical image segmentation.
Previous methods proposed Variational Autoencoder (VAE) based models to learn the distribution of shape for a particular organ.
We propose a new unsupervised domain adaptation pipeline based on a pseudo loss and a VAE reconstruction loss under a teacher-student learning paradigm.
arXiv Detail & Related papers (2022-07-06T09:16:42Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Bidirectional RNN-based Few Shot Learning for 3D Medical Image
Segmentation [11.873435088539459]
We propose a 3D few shot segmentation framework for accurate organ segmentation using limited training samples of the target organ annotation.
A U-Net like network is designed to predict segmentation by learning the relationship between 2D slices of support data and a query image.
We evaluate our proposed model using three 3D CT datasets with annotations of different organs.
arXiv Detail & Related papers (2020-11-19T01:44:55Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.