Routine pattern discovery and anomaly detection in individual travel
behavior
- URL: http://arxiv.org/abs/2004.03481v1
- Date: Sun, 5 Apr 2020 14:28:26 GMT
- Title: Routine pattern discovery and anomaly detection in individual travel
behavior
- Authors: Lijun Sun, Xinyu Chen, Zhaocheng He and Luis F. Miranda-Moreno
- Abstract summary: We build a probabilistic framework to model individualtemporal travel behavior data.
We demonstrate the effectiveness of the proposed framework on a real-world license plate recognition (LPR) data set.
This type of pattern discovery and anomaly detection applications can provide useful insights for traffic monitoring, law enforcement, and individual travel behavior profiling.
- Score: 14.490713382567073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discovering patterns and detecting anomalies in individual travel behavior is
a crucial problem in both research and practice. In this paper, we address this
problem by building a probabilistic framework to model individual
spatiotemporal travel behavior data (e.g., trip records and trajectory data).
We develop a two-dimensional latent Dirichlet allocation (LDA) model to
characterize the generative mechanism of spatiotemporal trip records of each
traveler. This model introduces two separate factor matrices for the spatial
dimension and the temporal dimension, respectively, and use a two-dimensional
core structure at the individual level to effectively model the joint
interactions and complex dependencies. This model can efficiently summarize
travel behavior patterns on both spatial and temporal dimensions from very
sparse trip sequences in an unsupervised way. In this way, complex travel
behavior can be modeled as a mixture of representative and interpretable
spatiotemporal patterns. By applying the trained model on future/unseen
spatiotemporal records of a traveler, we can detect her behavior anomalies by
scoring those observations using perplexity. We demonstrate the effectiveness
of the proposed modeling framework on a real-world license plate recognition
(LPR) data set. The results confirm the advantage of statistical learning
methods in modeling sparse individual travel behavior data. This type of
pattern discovery and anomaly detection applications can provide useful
insights for traffic monitoring, law enforcement, and individual travel
behavior profiling.
Related papers
- Uncertainty-aware Human Mobility Modeling and Anomaly Detection [28.311683535974634]
We study how to model human agents' mobility behavior toward effective anomaly detection.
We use GPS data as a sequence stay-point events, each with a set of characterizingtemporal features.
Experiments on large expert-simulated datasets with tens of thousands of agents demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2024-10-02T06:57:08Z) - Trajectory Anomaly Detection with Language Models [21.401931052512595]
This paper presents a novel approach for trajectory anomaly detection using an autoregressive causal-attention model, termed LM-TAD.
By treating trajectories as sequences of tokens, our model learns the probability distributions over trajectories, enabling the identification of anomalous locations with high precision.
Our experiments demonstrate the effectiveness of LM-TAD on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-18T17:33:31Z) - Discovering Dynamic Patterns from Spatiotemporal Data with Time-Varying
Low-Rank Autoregression [12.923271427789267]
We develop a time-reduced-rank vector autoregression model whose coefficient are parameterized by low-rank tensor factorization.
In the temporal context, the complex time-varying system behaviors can be revealed by the temporal modes in the proposed model.
arXiv Detail & Related papers (2022-11-28T15:59:52Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - OR-Net: Pointwise Relational Inference for Data Completion under Partial
Observation [51.083573770706636]
This work uses relational inference to fill in the incomplete data.
We propose Omni-Relational Network (OR-Net) to model the pointwise relativity in two aspects.
arXiv Detail & Related papers (2021-05-02T06:05:54Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Unsupervised Noisy Tracklet Person Re-identification [100.85530419892333]
We present a novel selective tracklet learning (STL) approach that can train discriminative person re-id models from unlabelled tracklet data.
This avoids the tedious and costly process of exhaustively labelling person image/tracklet true matching pairs across camera views.
Our method is particularly more robust against arbitrary noisy data of raw tracklets therefore scalable to learning discriminative models from unconstrained tracking data.
arXiv Detail & Related papers (2021-01-16T07:31:00Z) - Deep dynamic modeling with just two time points: Can we still allow for
individual trajectories? [0.0]
In epidemiological cohort studies and clinical registries Longitudinal biomedical data are often characterized by a sparse time grid.
Inspired by recent advances that allow to combine deep learning with dynamic modeling, we investigate whether such approaches can be useful for uncovering complex structure.
We show that such dynamic deep learning approaches can be useful even in extreme small data settings, but need to be carefully adapted.
arXiv Detail & Related papers (2020-12-01T16:58:02Z) - Deep Multi-Shot Network for modelling Appearance Similarity in
Multi-Person Tracking applications [0.0]
This article presents a Deep Multi-Shot neural model for measuring the Degree of Appearance Similarity (MS-DoAS) between person observations.
The model has been deliberately trained to be able to manage the presence of previous identity switches and missed observations in the handled tracks.
It has demonstrated a high capacity to discern when a new observation corresponds to a certain track, achieving a classification accuracy of 97% in a hard test.
arXiv Detail & Related papers (2020-04-07T16:43:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.