Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder
- URL: http://arxiv.org/abs/2102.01331v1
- Date: Tue, 2 Feb 2021 06:15:15 GMT
- Title: Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder
- Authors: Longyuan Li, Junchi Yan, Haiyang Wang, and Yaohui Jin
- Abstract summary: We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
- Score: 59.69303945834122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep generative models have demonstrated their effectiveness in learning
latent representation and modeling complex dependencies of time series. In this
paper, we present a Smoothness-Inducing Sequential Variational Auto-Encoder
(SISVAE) model for robust estimation and anomaly detection of multi-dimensional
time series. Our model is based on Variational Auto-Encoder (VAE), and its
backbone is fulfilled by a Recurrent Neural Network to capture latent temporal
structures of time series for both generative model and inference model.
Specifically, our model parameterizes mean and variance for each time-stamp
with flexible neural networks, resulting in a non-stationary model that can
work without the assumption of constant noise as commonly made by existing
Markov models. However, such a flexibility may cause the model fragile to
anomalies. To achieve robust density estimation which can also benefit
detection tasks, we propose a smoothness-inducing prior over possible
estimations. The proposed prior works as a regularizer that places penalty at
non-smooth reconstructions. Our model is learned efficiently with a novel
stochastic gradient variational Bayes estimator. In particular, we study two
decision criteria for anomaly detection: reconstruction probability and
reconstruction error. We show the effectiveness of our model on both synthetic
datasets and public real-world benchmarks.
Related papers
- Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data.
Our method relies on a continuous-time-dependent model of the series' evolution dynamics.
A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows.
arXiv Detail & Related papers (2023-06-09T13:20:04Z) - Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive
Models [2.7391842773173334]
We develop a simulation-based deep learning method for Bayesian inference, which can recover both time-varying and time-invariant parameters.
Our results show that the deep learning approach is very efficient in capturing the temporal dynamics of the model.
arXiv Detail & Related papers (2022-11-23T17:42:53Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
This work presents DGHL, a new family of generative models for time series anomaly detection.
A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently.
Our method outperformed current state-of-the-art models on four popular benchmark datasets.
arXiv Detail & Related papers (2022-02-15T17:19:44Z) - Robust Audio Anomaly Detection [10.75127981612396]
The presented approach doesn't assume the presence of labeled anomalies in the training dataset.
The temporal dynamics are modeled using recurrent layers augmented with attention mechanism.
The output of the network is an outlier robust probability density function.
arXiv Detail & Related papers (2022-02-03T17:19:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Deep Neural Dynamic Bayesian Networks applied to EEG sleep spindles
modeling [0.0]
We propose a generative model for single-channel EEG that incorporates the constraints experts actively enforce during visual scoring.
We derive algorithms for exact, tractable inference as a special case of Generalized Expectation Maximization.
We validate the model on three public datasets and provide support that more complex models are able to surpass state-of-the-art detectors.
arXiv Detail & Related papers (2020-10-16T21:48:29Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.