Capsule Networks -- A Probabilistic Perspective
- URL: http://arxiv.org/abs/2004.03553v3
- Date: Wed, 6 Jan 2021 10:04:41 GMT
- Title: Capsule Networks -- A Probabilistic Perspective
- Authors: Lewis Smith and Lisa Schut and Yarin Gal and Mark van der Wilk
- Abstract summary: 'Capsule' models try to explicitly represent the poses of objects, enforcing a linear relationship between an object's pose and that of its constituent parts.
We describe a probabilistic generative model which encodes such capsule assumptions, clearly separating the generative parts of the model from the inference mechanisms.
We experimentally demonstrate the applicability of our unified objective, and demonstrate the use of test time optimisation to solve problems inherent to amortised inference in our model.
- Score: 42.187785678596384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 'Capsule' models try to explicitly represent the poses of objects, enforcing
a linear relationship between an object's pose and that of its constituent
parts. This modelling assumption should lead to robustness to viewpoint changes
since the sub-object/super-object relationships are invariant to the poses of
the object. We describe a probabilistic generative model which encodes such
capsule assumptions, clearly separating the generative parts of the model from
the inference mechanisms. With a variational bound we explore the properties of
the generative model independently of the approximate inference scheme, and
gain insights into failures of the capsule assumptions and inference
amortisation. We experimentally demonstrate the applicability of our unified
objective, and demonstrate the use of test time optimisation to solve problems
inherent to amortised inference in our model.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Generative vs. Discriminative modeling under the lens of uncertainty quantification [0.929965561686354]
In this paper, we undertake a comparative analysis of generative and discriminative approaches.
We compare the ability of both approaches to leverage information from various sources in an uncertainty aware inference.
We propose a general sampling scheme enabling supervised learning for both approaches, as well as semi-supervised learning when compatible with the considered modeling approach.
arXiv Detail & Related papers (2024-06-13T14:32:43Z) - Consistent Explanations in the Face of Model Indeterminacy via
Ensembling [12.661530681518899]
This work addresses the challenge of providing consistent explanations for predictive models in the presence of model indeterminacy.
We introduce ensemble methods to enhance the consistency of the explanations provided in these scenarios.
Our findings highlight the importance of considering model indeterminacy when interpreting explanations.
arXiv Detail & Related papers (2023-06-09T18:45:43Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Learning Invariances for Interpretability using Supervised VAE [0.0]
We learn model invariances as a means of interpreting a model.
We propose a supervised form of variational auto-encoders (VAEs)
We show how combining our model with feature attribution methods it is possible to reach a more fine-grained understanding about the decision process of the model.
arXiv Detail & Related papers (2020-07-15T10:14:16Z) - A Meta-Bayesian Model of Intentional Visual Search [0.0]
We propose a computational model of visual search that incorporates Bayesian interpretations of the neural mechanisms that underlie categorical perception and saccade planning.
To enable meaningful comparisons between simulated and human behaviours, we employ a gaze-contingent paradigm that required participants to classify occluded MNIST digits through a window that followed their gaze.
Our model is able to recapitulate human behavioural metrics such as classification accuracy while retaining a high degree of interpretability, which we demonstrate by recovering subject-specific parameters from observed human behaviour.
arXiv Detail & Related papers (2020-06-05T16:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.