DMLO: Deep Matching LiDAR Odometry
- URL: http://arxiv.org/abs/2004.03796v2
- Date: Thu, 9 Apr 2020 02:25:38 GMT
- Title: DMLO: Deep Matching LiDAR Odometry
- Authors: Zhichao Li, Naiyan Wang
- Abstract summary: Deep Matching LiDAR Odometry (DMLO) is a novel learning-based framework which makes the feature matching method applicable to LiDAR odometry task.
We show that our framework dramatically outperforms existing learning-based methods and comparable with the state-of-the-art geometry based approaches.
- Score: 24.245702652854217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR odometry is a fundamental task for various areas such as robotics,
autonomous driving. This problem is difficult since it requires the systems to
be highly robust running in noisy real-world data. Existing methods are mostly
local iterative methods. Feature-based global registration methods are not
preferred since extracting accurate matching pairs in the nonuniform and sparse
LiDAR data remains challenging. In this paper, we present Deep Matching LiDAR
Odometry (DMLO), a novel learning-based framework which makes the feature
matching method applicable to LiDAR odometry task. Unlike many recent
learning-based methods, DMLO explicitly enforces geometry constraints in the
framework. Specifically, DMLO decomposes the 6-DoF pose estimation into two
parts, a learning-based matching network which provides accurate
correspondences between two scans and rigid transformation estimation with a
close-formed solution by Singular Value Decomposition (SVD). Comprehensive
experimental results on real-world datasets KITTI and Argoverse demonstrate
that our DMLO dramatically outperforms existing learning-based methods and
comparable with the state-of-the-art geometry based approaches.
Related papers
- Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Mirror Diffusion Models for Constrained and Watermarked Generation [41.27274841596343]
Mirror Diffusion Models (MDM) is a new class of diffusion models that generate data on convex constrained sets without losing tractability.
For safety and privacy purposes, we also explore constrained sets as a new mechanism to embed invisible but quantitative information in generated data.
Our work brings new algorithmic opportunities for learning tractable diffusion on complex domains.
arXiv Detail & Related papers (2023-10-02T14:26:31Z) - The Generalization Error of Stochastic Mirror Descent on
Over-Parametrized Linear Models [37.6314945221565]
Deep networks are known to generalize well to unseen data.
Regularization properties ensure interpolating solutions with "good" properties are found.
We present simulation results that validate the theory and introduce two data models.
arXiv Detail & Related papers (2023-02-18T22:23:42Z) - Learning Mixtures of Linear Dynamical Systems [94.49754087817931]
We develop a two-stage meta-algorithm to efficiently recover each ground-truth LDS model up to error $tildeO(sqrtd/T)$.
We validate our theoretical studies with numerical experiments, confirming the efficacy of the proposed algorithm.
arXiv Detail & Related papers (2022-01-26T22:26:01Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z) - Invertible Manifold Learning for Dimension Reduction [44.16432765844299]
Dimension reduction (DR) aims to learn low-dimensional representations of high-dimensional data with the preservation of essential information.
We propose a novel two-stage DR method, called invertible manifold learning (inv-ML) to bridge the gap between theoretical information-lossless and practical DR.
Experiments are conducted on seven datasets with a neural network implementation of inv-ML, called i-ML-Enc.
arXiv Detail & Related papers (2020-10-07T14:22:51Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
We propose a practical online method for solving a class of online distributionally robust optimization (DRO) problems.
Our studies demonstrate important applications in machine learning for improving the robustness of networks.
arXiv Detail & Related papers (2020-06-17T20:19:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.