High Accuracy Phishing Detection Based on Convolutional Neural Networks
- URL: http://arxiv.org/abs/2004.03960v1
- Date: Wed, 8 Apr 2020 12:20:14 GMT
- Title: High Accuracy Phishing Detection Based on Convolutional Neural Networks
- Authors: Suleiman Y. Yerima and Mohammed K. Alzaylaee
- Abstract summary: We present a deep learning-based approach to enable high accuracy detection of phishing sites.
The proposed approach utilizes convolutional neural networks (CNN) for high accuracy classification.
We evaluate the models using a dataset obtained from 6,157 genuine and 4,898 phishing websites.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The persistent growth in phishing and the rising volume of phishing websites
has led to individuals and organizations worldwide becoming increasingly
exposed to various cyber-attacks. Consequently, more effective phishing
detection is required for improved cyber defence. Hence, in this paper we
present a deep learning-based approach to enable high accuracy detection of
phishing sites. The proposed approach utilizes convolutional neural networks
(CNN) for high accuracy classification to distinguish genuine sites from
phishing sites. We evaluate the models using a dataset obtained from 6,157
genuine and 4,898 phishing websites. Based on the results of extensive
experiments, our CNN based models proved to be highly effective in detecting
unknown phishing sites. Furthermore, the CNN based approach performed better
than traditional machine learning classifiers evaluated on the same dataset,
reaching 98.2% phishing detection rate with an F1-score of 0.976. The method
presented in this paper compares favourably to the state-of-the art in deep
learning based phishing website detection.
Related papers
- Next Generation of Phishing Attacks using AI powered Browsers [0.0]
The model had an accuracy of 98.32%, precision of 98.62%, recall of 97.86%, and an F1-score of 98.24%.
The zero-day phishing attack detection testing over a 15-day period revealed the model's capability to identify previously unseen threats.
The model had successfully detected phishing URLs that evaded detection by Google safe browsing.
arXiv Detail & Related papers (2024-06-18T12:24:36Z) - The Performance of Sequential Deep Learning Models in Detecting Phishing Websites Using Contextual Features of URLs [0.0]
This study focuses on the detection of phishing websites using deep learning models such as Multi-Head Attention, Temporal Convolutional Network (TCN), BI-LSTM, and LSTM.
Results demonstrate that Multi-Head Attention and BI-LSTM model outperform some other deep learning-based algorithms such as TCN and LSTM in producing better precision, recall, and F1-scores.
arXiv Detail & Related papers (2024-04-15T13:58:22Z) - A Sophisticated Framework for the Accurate Detection of Phishing Websites [0.0]
Phishing is an increasingly sophisticated form of cyberattack that is inflicting huge financial damage to corporations throughout the globe.
This paper proposes a comprehensive methodology for detecting phishing websites.
A combination of feature selection, greedy algorithm, cross-validation, and deep learning methods have been utilized to construct a sophisticated stacking ensemble.
arXiv Detail & Related papers (2024-03-13T14:26:25Z) - An Innovative Information Theory-based Approach to Tackle and Enhance The Transparency in Phishing Detection [23.962076093344166]
We propose an innovative deep learning-based approach for phishing attack localization.
Our method can not only predict the vulnerability of the email data but also automatically learn and figure out the most important and phishing-relevant information.
arXiv Detail & Related papers (2024-02-27T00:03:07Z) - Phishing Attacks Detection -- A Machine Learning-Based Approach [0.6445605125467573]
Phishing attacks are one of the most common social engineering attacks targeting users emails to fraudulently steal confidential and sensitive information.
In this paper, we proposed a phishing attack detection technique based on machine learning.
We collected and analyzed more than 4000 phishing emails targeting the email service of the University of North Dakota.
arXiv Detail & Related papers (2022-01-26T05:08:27Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Adversarially robust deepfake media detection using fused convolutional
neural network predictions [79.00202519223662]
Current deepfake detection systems struggle against unseen data.
We employ three different deep Convolutional Neural Network (CNN) models to classify fake and real images extracted from videos.
The proposed technique outperforms state-of-the-art models with 96.5% accuracy.
arXiv Detail & Related papers (2021-02-11T11:28:00Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
In many cases, pre-trained models are sourced from vendors who may have disrupted the training pipeline to insert Trojan behaviors into the models.
We propose a method to verify if a pre-trained model is Trojaned or benign.
Our method captures fingerprints of neural networks in the form of adversarial perturbations learned from the network gradients.
arXiv Detail & Related papers (2020-07-28T19:00:40Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.