Phishing URL Detection using Bi-LSTM
- URL: http://arxiv.org/abs/2504.21049v1
- Date: Tue, 29 Apr 2025 00:55:01 GMT
- Title: Phishing URL Detection using Bi-LSTM
- Authors: Sneha Baskota,
- Abstract summary: This paper proposes a deep learning-based approach to classify URLs into four categories: benign, phishing, defacement, and malware.<n> Experimental results on a dataset comprising over 650,000 URLs demonstrate the model's effectiveness, achieving 97% accuracy and significant improvements over traditional techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Phishing attacks threaten online users, often leading to data breaches, financial losses, and identity theft. Traditional phishing detection systems struggle with high false positive rates and are usually limited by the types of attacks they can identify. This paper proposes a deep learning-based approach using a Bidirectional Long Short-Term Memory (Bi-LSTM) network to classify URLs into four categories: benign, phishing, defacement, and malware. The model leverages sequential URL data and captures contextual information, improving the accuracy of phishing detection. Experimental results on a dataset comprising over 650,000 URLs demonstrate the model's effectiveness, achieving 97% accuracy and significant improvements over traditional techniques.
Related papers
- EXPLICATE: Enhancing Phishing Detection through Explainable AI and LLM-Powered Interpretability [44.2907457629342]
EXPLICATE is a framework that enhances phishing detection through a three-component architecture.<n>It is on par with existing deep learning techniques but has better explainability.<n>It addresses the critical divide between automated AI and user trust in phishing detection systems.
arXiv Detail & Related papers (2025-03-22T23:37:35Z) - Web Phishing Net (WPN): A scalable machine learning approach for real-time phishing campaign detection [0.0]
Phishing is the most prevalent type of cyber-attack today and is recognized as the leading source of data breaches.<n>In this paper, we propose an unsupervised learning approach that is fast but scalable.<n>It is able to detect entire campaigns at a time with a high detection rate while preserving user privacy.
arXiv Detail & Related papers (2025-02-17T15:06:56Z) - Efficient Phishing URL Detection Using Graph-based Machine Learning and Loopy Belief Propagation [12.89058029173131]
We propose a graph-based machine learning model for phishing URL detection.<n>We integrate URL structure and network-level features such as IP addresses and authoritative name servers.<n>Experiments on real-world datasets demonstrate our model's effectiveness by achieving F1 score of up to 98.77%.
arXiv Detail & Related papers (2025-01-12T19:49:00Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - The Performance of Sequential Deep Learning Models in Detecting Phishing Websites Using Contextual Features of URLs [0.0]
This study focuses on the detection of phishing websites using deep learning models such as Multi-Head Attention, Temporal Convolutional Network (TCN), BI-LSTM, and LSTM.
Results demonstrate that Multi-Head Attention and BI-LSTM model outperform some other deep learning-based algorithms such as TCN and LSTM in producing better precision, recall, and F1-scores.
arXiv Detail & Related papers (2024-04-15T13:58:22Z) - A Sophisticated Framework for the Accurate Detection of Phishing Websites [0.0]
Phishing is an increasingly sophisticated form of cyberattack that is inflicting huge financial damage to corporations throughout the globe.
This paper proposes a comprehensive methodology for detecting phishing websites.
A combination of feature selection, greedy algorithm, cross-validation, and deep learning methods have been utilized to construct a sophisticated stacking ensemble.
arXiv Detail & Related papers (2024-03-13T14:26:25Z) - AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized
Phishing URL Detection [0.32141666878560626]
This paper introduces a two-phase stack generalized model named AntiPhishStack, designed to detect phishing sites.
The model leverages the learning of URLs and character-level TF-IDF features symmetrically, enhancing its ability to combat emerging phishing threats.
Experimental validation on two benchmark datasets, comprising benign and phishing or malicious URLs, demonstrates the model's exceptional performance, achieving a notable 96.04% accuracy compared to existing studies.
arXiv Detail & Related papers (2024-01-17T03:44:27Z) - Protecting Model Adaptation from Trojans in the Unlabeled Data [120.42853706967188]
This paper explores the potential trojan attacks on model adaptation launched by well-designed poisoning target data.<n>We propose a plug-and-play method named DiffAdapt, which can be seamlessly integrated with existing adaptation algorithms.
arXiv Detail & Related papers (2024-01-11T16:42:10Z) - FLTracer: Accurate Poisoning Attack Provenance in Federated Learning [38.47921452675418]
Federated Learning (FL) is a promising distributed learning approach that enables multiple clients to collaboratively train a shared global model.
Recent studies show that FL is vulnerable to various poisoning attacks, which can degrade the performance of global models or introduce backdoors into them.
We propose FLTracer, the first FL attack framework to accurately detect various attacks and trace the attack time, objective, type, and poisoned location of updates.
arXiv Detail & Related papers (2023-10-20T11:24:38Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - IMBERT: Making BERT Immune to Insertion-based Backdoor Attacks [45.81957796169348]
Backdoor attacks are an insidious security threat against machine learning models.
We introduce IMBERT, which uses either gradients or self-attention scores derived from victim models to self-defend against backdoor attacks.
Our empirical studies demonstrate that IMBERT can effectively identify up to 98.5% of inserted triggers.
arXiv Detail & Related papers (2023-05-25T22:08:57Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.