論文の概要: Multi-Person Absolute 3D Human Pose Estimation with Weak Depth
Supervision
- arxiv url: http://arxiv.org/abs/2004.03989v1
- Date: Wed, 8 Apr 2020 13:29:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 09:12:44.121979
- Title: Multi-Person Absolute 3D Human Pose Estimation with Weak Depth
Supervision
- Title(参考訳): 深度の弱いマルチパーソン絶対3次元ポーズ推定
- Authors: Marton Veges, Andras Lorincz
- Abstract要約: 弱教師付きでRGB-D画像を追加してトレーニングできるネットワークを導入する。
我々のアルゴリズムは、単眼で、多人、絶対的なポーズ推定器である。
アルゴリズムを複数のベンチマークで評価し,一貫した誤差率の向上を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In 3D human pose estimation one of the biggest problems is the lack of large,
diverse datasets. This is especially true for multi-person 3D pose estimation,
where, to our knowledge, there are only machine generated annotations available
for training. To mitigate this issue, we introduce a network that can be
trained with additional RGB-D images in a weakly supervised fashion. Due to the
existence of cheap sensors, videos with depth maps are widely available, and
our method can exploit a large, unannotated dataset. Our algorithm is a
monocular, multi-person, absolute pose estimator. We evaluate the algorithm on
several benchmarks, showing a consistent improvement in error rates. Also, our
model achieves state-of-the-art results on the MuPoTS-3D dataset by a
considerable margin.
- Abstract(参考訳): 人間の3Dポーズ推定では、大きな多様なデータセットが不足している。
これは、多人数の3dポーズ推定において特に当てはまります。
この問題を軽減するために,RGB-D画像の追加を弱教師付きでトレーニングできるネットワークを導入する。
安価なセンサが存在するため、深度マップ付きビデオが広く利用でき、我々の手法は大規模な無注釈データセットを活用できる。
我々のアルゴリズムは単眼、多人、絶対ポーズ推定器である。
アルゴリズムを複数のベンチマークで評価し,一貫した誤差率の向上を示した。
また,本モデルは,mupots-3dデータセットにおける最先端の結果をかなりのマージンで達成する。
関連論文リスト
- X as Supervision: Contending with Depth Ambiguity in Unsupervised Monocular 3D Pose Estimation [12.765995624408557]
マルチハイポテーシス検出と複数の調整済みプレテキストタスクを特徴とする教師なしフレームワークを提案する。
ローカルウィンドウ内のヒートマップから複数の仮説を抽出し、マルチソリューション問題を効果的に管理する。
プリテキストタスクは、SMPLモデルからの3D人間の事前情報を利用して、ポーズ推定の解空間を規則化し、それを3D人間の構造を経験的分布と整合させる。
論文 参考訳(メタデータ) (2024-11-20T04:18:11Z) - Multi-person 3D pose estimation from unlabelled data [2.54990557236581]
シナリオ内の人々の横断的な対応を予測できるグラフニューラルネットワークに基づくモデルを提案する。
また、各人物の3Dポーズを生成するために2Dポイントを利用する多層パーセプトロンも提示する。
論文 参考訳(メタデータ) (2022-12-16T22:03:37Z) - Decanus to Legatus: Synthetic training for 2D-3D human pose lifting [26.108023246654646]
10個の手作り3Dポーズ(Decanus)に基づく3Dポーズ分布から無限個の合成人間のポーズ(Legatus)を生成するアルゴリズムを提案する。
この結果から,特定データセットの実際のデータを用いた手法に匹敵する3次元ポーズ推定性能を,ゼロショット設定で実現し,フレームワークの可能性を示した。
論文 参考訳(メタデータ) (2022-10-05T13:10:19Z) - On Triangulation as a Form of Self-Supervision for 3D Human Pose
Estimation [57.766049538913926]
ラベル付きデータが豊富である場合, 単一画像からの3次元ポーズ推定に対する改良されたアプローチは, 極めて効果的である。
最近の注目の多くは、セミと(あるいは)弱い教師付き学習に移行している。
本稿では,多視点の幾何学的制約を,識別可能な三角測量を用いて課し,ラベルがない場合の自己監督の形式として用いることを提案する。
論文 参考訳(メタデータ) (2022-03-29T19:11:54Z) - Self-Supervised 3D Human Pose Estimation with Multiple-View Geometry [2.7541825072548805]
本稿では,複数視点カメラシステムに基づく1人の人物の3次元ポーズ推定のための自己教師付き学習アルゴリズムを提案する。
そこで本研究では,2次元・3次元の立体ポーズが不要な4自由度関数学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-17T17:31:24Z) - MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision [72.5863451123577]
正確な3Dポーズとカメラ推定が可能なニューラルモデルをトレーニングする方法を示す。
本手法は,古典的バンドル調整と弱教師付き単分子3Dベースラインの両方に優れる。
論文 参考訳(メタデータ) (2021-08-10T18:39:56Z) - VoxelTrack: Multi-Person 3D Human Pose Estimation and Tracking in the
Wild [98.69191256693703]
本稿では,VoxelTrackを用いて,多人数の3次元ポーズ推定と,広義のベースラインで分離された少数のカメラからの追跡を行う。
マルチブランチネットワークを使用して、環境中のすべての人に3Dポーズと再識別機能(Re-ID)を共同で推定する。
これは、Shelf、Campus、CMU Panopticの3つの公開データセットに対して、最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-08-05T08:35:44Z) - Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo [71.59494156155309]
既存のマルチビュー3Dポーズ推定手法は、複数のカメラビューからグループ2Dポーズ検出に対するクロスビュー対応を明確に確立する。
平面スイープステレオに基づくマルチビュー3Dポーズ推定手法を提案し、クロスビュー融合と3Dポーズ再構築を1ショットで共同で解決します。
論文 参考訳(メタデータ) (2021-04-06T03:49:35Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
本稿では,RGB画像と大規模に異なる複数の身体部位の3次元メッシュを推定することを目的とする。
主な課題は、2D画像のすべての身体部分の3Dアノテーションを完備するトレーニングデータがないことである。
本稿では,D2S(Deep-to-scale)投影法を提案する。
論文 参考訳(メタデータ) (2020-10-27T03:31:35Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
ラベルのないビデオフレームからバリエーションを分離する自己教師付き学習フレームワークを提案する。
3Dポーズと空間部分マップの表現ギャップを埋める、微分可能な形式化により、多様なカメラの動きを持つビデオで操作できる。
論文 参考訳(メタデータ) (2020-04-09T07:55:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。