論文の概要: Learning Discrete Structured Representations by Adversarially Maximizing
Mutual Information
- arxiv url: http://arxiv.org/abs/2004.03991v2
- Date: Wed, 15 Jul 2020 18:03:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 08:28:10.858365
- Title: Learning Discrete Structured Representations by Adversarially Maximizing
Mutual Information
- Title(参考訳): 相互情報の相互最大化による離散構造表現の学習
- Authors: Karl Stratos, Sam Wiseman
- Abstract要約: 本研究では、構造化潜在変数と対象変数の相互情報を最大化することにより、ラベルのないデータから離散的構造化表現を学習する。
我々の重要な技術的貢献は、クロスエントロピー計算の実現可能性のみを前提として、相互情報を的確に見積もることができる敵の目的である。
文書ハッシュに本モデルを適用し,離散およびベクトル量子化変分オートエンコーダに基づいて,現在の最良ベースラインよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 39.87273353895564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose learning discrete structured representations from unlabeled data
by maximizing the mutual information between a structured latent variable and a
target variable. Calculating mutual information is intractable in this setting.
Our key technical contribution is an adversarial objective that can be used to
tractably estimate mutual information assuming only the feasibility of cross
entropy calculation. We develop a concrete realization of this general
formulation with Markov distributions over binary encodings. We report critical
and unexpected findings on practical aspects of the objective such as the
choice of variational priors. We apply our model on document hashing and show
that it outperforms current best baselines based on discrete and vector
quantized variational autoencoders. It also yields highly compressed
interpretable representations.
- Abstract(参考訳): 構造化潜在変数と対象変数の相互情報を最大化することにより、ラベルのないデータから離散的構造化表現を学習する。
この設定では相互情報の計算が困難である。
我々の重要な技術的貢献は、クロスエントロピー計算の実現可能性のみを前提として、相互情報を的確に見積もることができる敵の目的である。
我々はこの一般化の具体的実現を二進符号化上でマルコフ分布で実現する。
変動優先の選択など,目的の実用的側面に関する批判的かつ予期せぬ知見を報告する。
文書ハッシュに本モデルを適用し,離散およびベクトル量子化変分オートエンコーダに基づいて,現在の最良ベースラインよりも優れていることを示す。
また、非常に圧縮された解釈可能な表現をもたらす。
関連論文リスト
- Probabilistic Dataset Reconstruction from Interpretable Models [8.31111379034875]
最適な解釈可能なモデルの方がコンパクトで、トレーニングデータに関する情報が、厳密に構築されたモデルよりも少ないことが示される。
この結果から,最適解釈可能なモデルの方がコンパクトで,学習データに関する情報が少ないことが示唆された。
論文 参考訳(メタデータ) (2023-08-29T08:10:09Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - FUNCK: Information Funnels and Bottlenecks for Invariant Representation
Learning [7.804994311050265]
データから不変表現を学習すると主張する一連の関連する情報漏えいとボトルネック問題について検討する。
本稿では,この情報理論の目的である「側情報付き条件付きプライバシ・ファンネル」の新たな要素を提案する。
一般に難解な目的を考慮し、ニューラルネットワークによってパラメータ化された補正変分推論を用いて、抽出可能な近似を導出する。
論文 参考訳(メタデータ) (2022-11-02T19:37:55Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
本稿では,潜伏変数の中間集合を用いて,制御可能なバイアスでVAEを学習するための簡易かつ効果的な手法を提案する。
特に、学習した表現に対して、スパーシリティやクラスタリングといった望ましいプロパティを課すことができます。
これにより、InteL-VAEはより優れた生成モデルと表現の両方を学ぶことができる。
論文 参考訳(メタデータ) (2021-06-25T16:34:05Z) - From Canonical Correlation Analysis to Self-supervised Graph Neural
Networks [99.44881722969046]
本稿では,グラフデータを用いた自己教師付き表現学習のための概念的単純かつ効果的なモデルを提案する。
古典的カノニカル相関解析にインスパイアされた,革新的な特徴レベルの目的を最適化する。
提案手法は、7つの公開グラフデータセット上で競合的に動作する。
論文 参考訳(メタデータ) (2021-06-23T15:55:47Z) - Parsimonious Inference [0.0]
parsimonious inferenceは任意のアーキテクチャ上の推論の情報理論的な定式化である。
提案手法は,効率的な符号化と巧妙なサンプリング戦略を組み合わせて,クロスバリデーションを伴わない予測アンサンブルを構築する。
論文 参考訳(メタデータ) (2021-03-03T04:13:14Z) - Variational Mutual Information Maximization Framework for VAE Latent
Codes with Continuous and Discrete Priors [5.317548969642376]
変分オートエンコーダ(VAE)は、複雑なデータの有向潜在変数モデルを学習するためのスケーラブルな方法である。
本稿では,VAEのための変分相互情報最大化フレームワークを提案し,この問題に対処する。
論文 参考訳(メタデータ) (2020-06-02T09:05:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。