The limit of spin lifetime in solid-state electronic spins
- URL: http://arxiv.org/abs/2004.04007v1
- Date: Wed, 8 Apr 2020 14:27:36 GMT
- Title: The limit of spin lifetime in solid-state electronic spins
- Authors: Alessandro Lunghi and Stefano Sanvito
- Abstract summary: We provide a complete first-principles picture of spin relaxation that includes up to two-phonon processes.
We study a vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of spin qubits for quantum technologies requires their
protection from the main source of finite-temperature decoherence: atomic
vibrations. Here we eliminate one of the main barriers to the progress in this
field by providing a complete first-principles picture of spin relaxation that
includes up to two-phonon processes. Our method is based on machine learning
and electronic structure theory and makes the prediction of spin lifetime in
realistic systems feasible. We study a prototypical vanadium-based molecular
qubit and reveal that the spin lifetime at high temperature is limited by Raman
processes due to a small number of THz intra-molecular vibrations. These
findings effectively change the conventional understanding of spin relaxation
in this class of materials and open new avenues for the rational design of
long-living spin systems.
Related papers
- Nanoscale engineering and dynamical stabilization of mesoscopic spin
textures [0.3770540828119563]
We demonstrate the ability to harness thermalization to engineer and stabilize structured quantum states in a mesoscopically large ensemble of spins.
Specifically, we showcase the capacity to generate, control, stabilize, and read out'shell-like' spin texture with interacting $ 13mathrmC$ nuclear spins in diamond.
arXiv Detail & Related papers (2023-10-09T11:46:53Z) - Spin-phonon decoherence in solid-state paramagnetic defects from first
principles [79.4957965474334]
Paramagnetic defects in diamond and hexagonal boron nitride possess a unique combination of spin and optical properties that make them solid-state qubits.
Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available.
We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence.
arXiv Detail & Related papers (2022-12-22T13:48:05Z) - Room-temperature coherent optical manipulation of single-hole spins in
solution-grown perovskite quantum dots [3.5994174958472316]
Current systems either operate at very low temperatures or are difficult to scale-up.
Here we report manipulation and readout of single-hole spins in an ensemble of solution-grown CsPbBr3 QDs.
These operations accomplish nearly complete quantum-state control of single-hole spins at room temperature.
arXiv Detail & Related papers (2022-08-24T15:32:24Z) - Mapping the energy-time landscape of spins with helical X-rays [0.0]
We show that ultrafast helicity-dependent soft X-ray absorption spectroscopy (HXAS) allows access to spin-, time- and energy specific state occupation after optical excitation.
Results show an ultrafast increase as minority carriers are excited by the laser pulse, before it is reduced as spin-flip process in highly localized, low energy states start to dominate.
arXiv Detail & Related papers (2022-05-06T12:39:47Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Spin-mechanics with nitrogen-vacancy centers and trapped particles [0.0]
We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state.
Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that will enable these systems to unleash their full potential.
arXiv Detail & Related papers (2021-04-20T20:43:24Z) - Electronic decay process spectra including nuclear degrees of freedom [49.1574468325115]
We explore the ultra-rapid electronic motion spanning attoseconds to femtoseconds, demonstrating that it is equally integral and relevant to the discipline.
The advent of ultrashort attosecond pulse technology has revolutionized our ability to directly observe electronic rearrangements in atoms and molecules.
arXiv Detail & Related papers (2021-02-10T16:51:48Z) - Ab initio Ultrafast Spin Dynamics in Solids [0.7874708385247353]
We present a first-principles real-time density-matrix approach based on Lindblad dynamics to simulate ultrafast spin dynamics for general solid-state systems.
We find that the electron-electron scattering is negligible at room temperature but becomes dominant at low temperatures for spin relaxation in n-type GaAs.
arXiv Detail & Related papers (2020-12-16T02:49:47Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.