Dynamics and correlations at a quantum phase transition beyond
Kibble-Zurek
- URL: http://arxiv.org/abs/2004.04162v2
- Date: Mon, 26 Jul 2021 21:42:06 GMT
- Title: Dynamics and correlations at a quantum phase transition beyond
Kibble-Zurek
- Authors: Krishanu Roychowdhury, Roderich Moessner, and Arnab Das
- Abstract summary: Kibble-Zurek theory (KZ) stands out as the most robust theory of defect generation in the dynamics of phase transitions.
Here we show, the actual nonequilibrium dynamics lead to a qualitatively different scenario from KZ, as far correlations between the defects (rather than their densities) are concerned.
We propose a simple but general framework on top of KZ, based on the "quantum coarsening" dynamics of local correlators in the supposed impulse regime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kibble-Zurek theory (KZ) stands out as the most robust theory of defect
generation in the dynamics of phase transitions. KZ utilizes the structure of
equilibrium states away from the transition point to estimate the excitations
due to the transition using adiabatic and impulse approximations. Here we show,
the actual nonequilibrium dynamics lead to a qualitatively different scenario
from KZ, as far correlations between the defects (rather than their densities)
are concerned. For a quantum Ising chain, we show, this gives rise to a
Gaussian spatial decay in the domain wall (kinks) correlations, while KZ would
predict an exponential fall. We propose a simple but general framework on top
of KZ, based on the "quantum coarsening" dynamics of local correlators in the
supposed impulse regime. We outline how our picture extends to generic
interacting situations.
Related papers
- Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.
We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.
We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Slow decay rate of correlations induced by long-range extended Dzyaloshinskii-Moriya interactions [0.0]
In the nearest-neighbor XY model with DM interaction, the transition from the gapless chiral phase to a gapped one occurs when the strengths of the DM interaction and anisotropy coincide.
We show that the critical line gets modified with the range of interactions which decay according to power-law.
We illustrate that in a non-equilibrium setting, the relaxation dynamics of classical correlation, the decay rate of total correlation, and the growth rate of entanglement entropy can be employed to uncover whether the evolving Hamiltonian and the Hamiltonian corresponding to the initial state are gapped or gapless.
arXiv Detail & Related papers (2024-07-31T15:12:04Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Large Deviations Beyond the Kibble-Zurek Mechanism [2.4020585213586387]
We study the universality of fluctuations beyond the KZM.
We report the exact form of the rate function in the transverse-field quantum Ising model.
arXiv Detail & Related papers (2023-07-05T18:00:00Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Anomalous ballistic scaling in the tensionless or inviscid
Kardar-Parisi-Zhang equation [0.0]
We show that the zero surface tension or zero viscosity case eludes analytical solutions.
Using numerical simulations, we elucidate a well-defined universality class for this case.
The latter may be relevant to recent quantum spin chain experiments which measure KPZ and ballistic relaxation under different conditions.
arXiv Detail & Related papers (2022-05-18T09:29:09Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Decoherence and classicalization of continuous-time quantum walks on
graphs [0.0]
We show that the dynamics arising from decoherence, i.e. dephasing in the energy basis, do not fully classicalize the walker.
On the other hand, dephasing in the position basis, as described by the Haken-Strobl master equation or by the quantum walk (QSW) model, induceally destroys the quantumness of the walker.
We also investigate the speed of the classicalization process, and observe a faster convergence of the QC-distance to its value for intrinsic decoherence and the QSW models.
arXiv Detail & Related papers (2022-04-04T20:40:47Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Entanglement Transitions from Stochastic Resetting of Non-Hermitian
Quasiparticles [0.0]
We write down a renewal equation for the statistics of the entanglement entropy and show that depending on the spectrum of quasiparticle decay rates different entanglement scaling can arise and even sharp entanglement phase transitions.
When applied to a Quantum Ising chain where the transverse magnetization is measured by quantum jumps, our theory predicts a critical phase with logarithmic scaling of the entanglement, an area law phase and a continuous phase transition between them, with an effective central charge vanishing as a square root at the transition point.
arXiv Detail & Related papers (2021-11-05T13:38:04Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.