Quantum Effects on the Synchronization Dynamics of the Kuramoto Model
- URL: http://arxiv.org/abs/2306.09956v1
- Date: Fri, 16 Jun 2023 16:41:16 GMT
- Title: Quantum Effects on the Synchronization Dynamics of the Kuramoto Model
- Authors: Anna Delmonte, Alessandro Romito, Giuseppe E. Santoro, Rosario Fazio
- Abstract summary: We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Kuramoto model serves as a paradigm for describing spontaneous
synchronization in a system of classical interacting rotors. In this study, we
extend this model to the quantum domain by coupling quantum interacting rotors
to external baths following the Caldeira-Leggett approach. Studying the
mean-field model in the overdamped limit using Feynman-Vernon theory, we show
how quantum mechanics modifies the phase diagram. Specifically, we demonstrate
that quantum fluctuations hinder the emergence of synchronization, albeit not
entirely suppressing it. We examine the phase transition into the synchronized
phase at various temperatures, revealing that classical results are recovered
at high temperatures while a quantum phase transition occurs at zero
temperature. Additionally, we derive an analytical expression for the critical
coupling, highlighting its dependence on the model parameters, and examine the
differences between classical and quantum behavior.
Related papers
- Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantumness and quantum to classical transition in the generalized Rabi
model [17.03191662568079]
We define the quantumness of a Hamiltonian by the free energy difference between its quantum and classical descriptions.
We show that the Jaynes-Cummings and anti Jaynes-Cummings models exhibit greater quantumness than the Rabi model.
arXiv Detail & Related papers (2023-11-12T18:24:36Z) - Dynamics Reflects Quantum Phase Transition of Rabi Model [0.0]
A breakdown in the rotating wave approximation of the Rabi model leads to phase transition versus coupling strength.
We show that the dynamics of physical quantities can reflect such a phase transition for this model.
This work offers an idea to explore phase transitions by non-equilibrium process for open quantum systems.
arXiv Detail & Related papers (2023-09-13T14:45:07Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Effects of critical correlations on quantum percolation in two
dimensions [0.0]
We consider a two-dimensional tight-binding model that interacts with a background of classical spins in thermal equilibrium.
To capture the salient features of the classical transition, we focus on the strong coupling limit.
We provide evidence that the classical phase transition might induce a delocalization-localization transition in the quantum system at certain energies.
arXiv Detail & Related papers (2022-03-28T18:00:01Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Entanglement and classical correlations at the doping-driven Mott
transition in the two-dimensional Hubbard model [0.0]
We study the doped Hubbard model in two dimensions from the perspective of quantum information theory.
We find that upon varying doping these two entanglement-related properties detect the Mott insulating phase, the strongly correlated pseudogap phase, and the metallic phase.
arXiv Detail & Related papers (2020-07-01T15:48:48Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.