論文の概要: Generating Counter Narratives against Online Hate Speech: Data and
Strategies
- arxiv url: http://arxiv.org/abs/2004.04216v1
- Date: Wed, 8 Apr 2020 19:35:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 09:32:02.608106
- Title: Generating Counter Narratives against Online Hate Speech: Data and
Strategies
- Title(参考訳): オンラインヘイトスピーチに対するカウンターナラティブの生成:データと戦略
- Authors: Serra Sinem Tekiroglu, Yi-Ling Chung, Marco Guerini
- Abstract要約: 本稿では,憎悪に対する回答を効果的に収集する方法について検討する。
銀データ生成には GPT-2 などの大規模教師なし言語モデルを用いる。
最高のアノテーション戦略/神経アーキテクチャは、専門家のバリデーション/ポスト編集の前にデータフィルタリングに使用できる。
- 参考スコア(独自算出の注目度): 21.098614110697184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently research has started focusing on avoiding undesired effects that
come with content moderation, such as censorship and overblocking, when dealing
with hatred online. The core idea is to directly intervene in the discussion
with textual responses that are meant to counter the hate content and prevent
it from further spreading. Accordingly, automation strategies, such as natural
language generation, are beginning to be investigated. Still, they suffer from
the lack of sufficient amount of quality data and tend to produce
generic/repetitive responses. Being aware of the aforementioned limitations, we
present a study on how to collect responses to hate effectively, employing
large scale unsupervised language models such as GPT-2 for the generation of
silver data, and the best annotation strategies/neural architectures that can
be used for data filtering before expert validation/post-editing.
- Abstract(参考訳): 最近、憎悪オンラインを扱う際、検閲やオーバーブロッキングなど、コンテンツモデレーションに伴う望ましくない効果を避ける研究が始まっている。
その中核となる考え方は、ヘイトコンテンツに対抗し、さらに広まるのを防ぐためのテキスト応答で議論に直接介入することだ。
そのため、自然言語生成などの自動化戦略が検討され始めている。
それでも、十分な量の品質データを欠如し、ジェネリック/反復的な応答を生み出す傾向にあります。
以上の制約に気付き、銀データ生成にGPT-2のような大規模教師なし言語モデルを用い、専門家の検証・編集に先立ってデータフィルタリングに利用できる最良のアノテーション戦略/神経アーキテクチャを用いて、憎悪に対する応答を効果的に収集する方法について研究する。
関連論文リスト
- Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
そこで本研究では,テキスト条件予測の大きさを検査することで,暗黙のプロンプトを検出する方法を提案する。
提案手法はサンプリングアルゴリズムを中断することなくシームレスに統合し,第1世代でも高い精度を実現する。
検出戦略に基づいて,個々の単語やトークンの記憶への寄与を示す説明可能なアプローチを提示する。
論文 参考訳(メタデータ) (2024-07-31T16:13:29Z) - Generating Enhanced Negatives for Training Language-Based Object Detectors [86.1914216335631]
我々は、現代の生成モデルに組み込まれた膨大な知識を活用して、元のデータにより関連性のある負を自動で構築することを提案する。
具体的には、大言語モデルを用いて、負のテキスト記述を生成するとともに、テキスト間拡散モデルを用いて、対応する負の画像を生成する。
実験により, 生成した負データとの関連性を確認し, 言語ベースの検出器での使用により, 2つの複雑なベンチマークの性能が向上した。
論文 参考訳(メタデータ) (2023-12-29T23:04:00Z) - Into the LAIONs Den: Investigating Hate in Multimodal Datasets [67.21783778038645]
本稿では、LAION-400MとLAION-2Bの2つのデータセットの比較監査を通して、ヘイトフルコンテンツに対するデータセットのスケーリングの効果について検討する。
その結果、データセットのスケールによってヘイトコンテンツは12%近く増加し、質的にも定量的にも測定された。
また、画像のみに基づいて算出されたNot Safe For Work(NSFW)値に基づくデータセットの内容のフィルタリングは、アルトテキストにおける有害なコンテンツをすべて排除するものではないことがわかった。
論文 参考訳(メタデータ) (2023-11-06T19:00:05Z) - HARE: Explainable Hate Speech Detection with Step-by-Step Reasoning [29.519687405350304]
本稿では,大規模言語モデル(LLM)の推論能力を利用して,ヘイトスピーチの説明のギャップを埋めるヘイトスピーチ検出フレームワークHAREを紹介する。
SBICとImplicit Hateベンチマークの実験では、モデル生成データを用いた手法がベースラインを一貫して上回ることを示した。
提案手法は,訓練されたモデルの説明品質を高め,未知のデータセットへの一般化を改善する。
論文 参考訳(メタデータ) (2023-11-01T06:09:54Z) - Hate Speech Detection in Limited Data Contexts using Synthetic Data
Generation [1.9506923346234724]
本稿では,限られたデータコンテキストにおいて,オンラインヘイトスピーチ検出のためのデータ不足の問題に対処するデータ拡張手法を提案する。
対象言語におけるヘイトスピーチデータの新しい例を合成する3つの方法を提案する。
以上の結果から, 合成データを用いたモデルでは, 対象領域で利用可能なサンプルに対してのみ学習したモデルが比較可能であり, 性能が良好である場合も見いだされた。
論文 参考訳(メタデータ) (2023-10-04T15:10:06Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - APEACH: Attacking Pejorative Expressions with Analysis on
Crowd-Generated Hate Speech Evaluation Datasets [4.034948808542701]
APEACHは、特定されていないユーザによって生成されるヘイトスピーチの収集を可能にする方法である。
ヘイトスピーチの群集生成を制御し,最小限のポストラベルのみを追加することにより,ヘイトスピーチ検出の一般化と公平な評価を可能にするコーパスを作成する。
論文 参考訳(メタデータ) (2022-02-25T02:04:38Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Towards Knowledge-Grounded Counter Narrative Generation for Hate Speech [15.039745292757672]
オンラインの憎しみに、インフォームド・テキストによる回答(カウンター・ナラティブと呼ばれる)を使って対処することが、最近注目を浴びている。
現在のニューラルアプローチでは、ジェネリック/反復的な応答が生じる傾向にあり、根拠と最新の証拠が欠如している。
外部知識リポジトリを基盤とした,最初の完全知識結合型カウンターナラティブ生成パイプラインを提示する。
論文 参考訳(メタデータ) (2021-06-22T13:48:49Z) - An Information Retrieval Approach to Building Datasets for Hate Speech
Detection [3.587367153279349]
「一般的な慣行は、既知の憎しみの言葉を含むツイートを注釈するだけである。」
第二の課題は、ヘイトスピーチの定義が高度に変動し、主観的である傾向があることである。
我々の重要な洞察は、ヘイトスピーチの希少性と主観性が情報検索(IR)の関連性に類似していることである。
論文 参考訳(メタデータ) (2021-06-17T19:25:39Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。