Online Meta-Learning for Multi-Source and Semi-Supervised Domain
Adaptation
- URL: http://arxiv.org/abs/2004.04398v2
- Date: Mon, 27 Jul 2020 12:55:37 GMT
- Title: Online Meta-Learning for Multi-Source and Semi-Supervised Domain
Adaptation
- Authors: Da Li, Timothy Hospedales
- Abstract summary: We propose a framework to enhance performance by meta-learning the initial conditions of existing DA algorithms.
We present variants for both multi-source unsupervised domain adaptation (MSDA), and semi-supervised domain adaptation (SSDA)
We achieve state of the art results on several DA benchmarks including the largest scale DomainNet.
- Score: 4.1799778475823315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation (DA) is the topical problem of adapting models from
labelled source datasets so that they perform well on target datasets where
only unlabelled or partially labelled data is available. Many methods have been
proposed to address this problem through different ways to minimise the domain
shift between source and target datasets. In this paper we take an orthogonal
perspective and propose a framework to further enhance performance by
meta-learning the initial conditions of existing DA algorithms. This is
challenging compared to the more widely considered setting of few-shot
meta-learning, due to the length of the computation graph involved. Therefore
we propose an online shortest-path meta-learning framework that is both
computationally tractable and practically effective for improving DA
performance. We present variants for both multi-source unsupervised domain
adaptation (MSDA), and semi-supervised domain adaptation (SSDA). Importantly,
our approach is agnostic to the base adaptation algorithm, and can be applied
to improve many techniques. Experimentally, we demonstrate improvements on
classic (DANN) and recent (MCD and MME) techniques for MSDA and SSDA, and
ultimately achieve state of the art results on several DA benchmarks including
the largest scale DomainNet.
Related papers
- More is Better: Deep Domain Adaptation with Multiple Sources [34.26271755493111]
Multi-source domain adaptation (MDA) is a powerful and practical extension in which the labeled data may be collected from multiple sources with different distributions.
In this survey, we first define various MDA strategies. Then we systematically summarize and compare modern MDA methods in the deep learning era from different perspectives.
arXiv Detail & Related papers (2024-05-01T03:37:12Z) - PracticalDG: Perturbation Distillation on Vision-Language Models for Hybrid Domain Generalization [24.413415998529754]
We propose a new benchmark Hybrid Domain Generalization (HDG) and a novel metric $H2$-CV, which construct various splits to assess the robustness of algorithms.
Our method outperforms state-of-the-art algorithms on multiple datasets, especially improving the robustness when confronting data scarcity.
arXiv Detail & Related papers (2024-04-13T13:41:13Z) - Subject-Based Domain Adaptation for Facial Expression Recognition [51.10374151948157]
Adapting a deep learning model to a specific target individual is a challenging facial expression recognition task.
This paper introduces a new MSDA method for subject-based domain adaptation in FER.
It efficiently leverages information from multiple source subjects to adapt a deep FER model to a single target individual.
arXiv Detail & Related papers (2023-12-09T18:40:37Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
Multi-source unsupervised domain adaptation (MSDA) aims at learning a predictor for an unlabeled domain by assigning weak knowledge from a bag of source models.
We propose to embed Multi-Source version of DomaIn Alignment Layers (MS-DIAL) at different levels of the predictor.
Our approach can improve state-of-the-art MSDA methods, yielding relative gains of up to +30.64% on their classification accuracies.
arXiv Detail & Related papers (2021-09-06T18:41:19Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Rethinking Distributional Matching Based Domain Adaptation [111.15106414932413]
Domain adaptation (DA) is a technique that transfers predictive models trained on a labeled source domain to an unlabeled target domain.
Most popular DA algorithms are based on distributional matching (DM)
In this paper, we first systematically analyze the limitations of DM based methods, and then build new benchmarks with more realistic domain shifts.
arXiv Detail & Related papers (2020-06-23T21:55:14Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z) - Multi-source Domain Adaptation in the Deep Learning Era: A Systematic
Survey [53.656086832255944]
Multi-source domain adaptation (MDA) is a powerful extension in which the labeled data may be collected from multiple sources.
MDA has attracted increasing attention in both academia and industry.
arXiv Detail & Related papers (2020-02-26T08:07:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.