Subject-Based Domain Adaptation for Facial Expression Recognition
- URL: http://arxiv.org/abs/2312.05632v3
- Date: Fri, 26 Apr 2024 20:35:41 GMT
- Title: Subject-Based Domain Adaptation for Facial Expression Recognition
- Authors: Muhammad Osama Zeeshan, Muhammad Haseeb Aslam, Soufiane Belharbi, Alessandro Lameiras Koerich, Marco Pedersoli, Simon Bacon, Eric Granger,
- Abstract summary: Adapting a deep learning model to a specific target individual is a challenging facial expression recognition task.
This paper introduces a new MSDA method for subject-based domain adaptation in FER.
It efficiently leverages information from multiple source subjects to adapt a deep FER model to a single target individual.
- Score: 51.10374151948157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adapting a deep learning model to a specific target individual is a challenging facial expression recognition (FER) task that may be achieved using unsupervised domain adaptation (UDA) methods. Although several UDA methods have been proposed to adapt deep FER models across source and target data sets, multiple subject-specific source domains are needed to accurately represent the intra- and inter-person variability in subject-based adaption. This paper considers the setting where domains correspond to individuals, not entire datasets. Unlike UDA, multi-source domain adaptation (MSDA) methods can leverage multiple source datasets to improve the accuracy and robustness of the target model. However, previous methods for MSDA adapt image classification models across datasets and do not scale well to a more significant number of source domains. This paper introduces a new MSDA method for subject-based domain adaptation in FER. It efficiently leverages information from multiple source subjects (labeled source domain data) to adapt a deep FER model to a single target individual (unlabeled target domain data). During adaptation, our subject-based MSDA first computes a between-source discrepancy loss to mitigate the domain shift among data from several source subjects. Then, a new strategy is employed to generate augmented confident pseudo-labels for the target subject, allowing a reduction in the domain shift between source and target subjects. Experiments performed on the challenging BioVid heat and pain dataset with 87 subjects and the UNBC-McMaster shoulder pain dataset with 25 subjects show that our subject-based MSDA can outperform state-of-the-art methods yet scale well to multiple subject-based source domains.
Related papers
- Source-Free Domain Adaptation for Medical Image Segmentation via
Prototype-Anchored Feature Alignment and Contrastive Learning [57.43322536718131]
We present a two-stage source-free domain adaptation (SFDA) framework for medical image segmentation.
In the prototype-anchored feature alignment stage, we first utilize the weights of the pre-trained pixel-wise classifier as source prototypes.
Then, we introduce the bi-directional transport to align the target features with class prototypes by minimizing its expected cost.
arXiv Detail & Related papers (2023-07-19T06:07:12Z) - Learning Feature Decomposition for Domain Adaptive Monocular Depth
Estimation [51.15061013818216]
Supervised approaches have led to great success with the advance of deep learning, but they rely on large quantities of ground-truth depth annotations.
Unsupervised domain adaptation (UDA) transfers knowledge from labeled source data to unlabeled target data, so as to relax the constraint of supervised learning.
We propose a novel UDA method for MDE, referred to as Learning Feature Decomposition for Adaptation (LFDA), which learns to decompose the feature space into content and style components.
arXiv Detail & Related papers (2022-07-30T08:05:35Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Multi-Source Unsupervised Domain Adaptation via Pseudo Target Domain [0.0]
Multi-source domain adaptation (MDA) aims to transfer knowledge from multiple source domains to an unlabeled target domain.
We propose a novel MDA approach, termed Pseudo Target for MDA (PTMDA)
PTMDA maps each group of source and target domains into a group-specific subspace using adversarial learning with a metric constraint.
We show that PTMDA as a whole can reduce the target error bound and leads to a better approximation of the target risk in MDA settings.
arXiv Detail & Related papers (2022-02-22T08:37:16Z) - Adapting Off-the-Shelf Source Segmenter for Target Medical Image
Segmentation [12.703234995718372]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to an unlabeled and unseen target domain.
Access to the source domain data at the adaptation stage is often limited, due to data storage or privacy issues.
We propose to adapt an off-the-shelf" segmentation model pre-trained in the source domain to the target domain.
arXiv Detail & Related papers (2021-06-23T16:16:55Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network-based approaches for semantic segmentation heavily rely on the pixel-level annotated data.
We propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation.
arXiv Detail & Related papers (2021-03-30T14:14:29Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
We present a novel UDA method for multi-modal cardiac image segmentation.
The proposed method is based on adversarial learning and adapts network features between source and target domain in different spaces.
We validated our method on two cardiac datasets by adapting from the annotated source domain to the unannotated target domain.
arXiv Detail & Related papers (2021-03-15T08:59:44Z) - Multi-source Domain Adaptation in the Deep Learning Era: A Systematic
Survey [53.656086832255944]
Multi-source domain adaptation (MDA) is a powerful extension in which the labeled data may be collected from multiple sources.
MDA has attracted increasing attention in both academia and industry.
arXiv Detail & Related papers (2020-02-26T08:07:58Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.