Reliable Time Prediction in the Markov Stochastic Block Model
- URL: http://arxiv.org/abs/2004.04402v2
- Date: Tue, 22 Mar 2022 07:57:23 GMT
- Title: Reliable Time Prediction in the Markov Stochastic Block Model
- Authors: Quentin Duchemin (LAMA)
- Abstract summary: We show how MSBMs can be used to detect dependence structure in growing graphs.
We provide methods to solve the so-called link prediction and collaborative filtering problems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the Markov Stochastic Block Model (MSBM): an extension of the
Stochastic Block Model where communities of the nodes are assigned through a
Markovian dynamic. We show how MSBMs can be used to detect dependence structure
in growing graphs and we provide methods to solve the so-called link prediction
and collaborative filtering problems. We make our approaches robust with
respect to the outputs of the clustering algorithm and we propose a model
selection procedure. Our methods can be applied regardless of the algorithm
used to recover communities in the network. In this paper, we use a recent SDP
method to infer the hidden communities and we provide theoretical guarantees.
In particular, we identify the relevant signal-to-noise ratio (SNR) in our
framework and we prove that the misclassification error decays exponentially
fast with respect to this SNR.
Related papers
- Representation and De-interleaving of Mixtures of Hidden Markov Processes [3.7348616912887445]
De-interleaving of mixtures of Hidden Markov Processes (HMPs) generally depends on its representation model.
This paper proposes a novel representation model and corresponding de-interleaving methods for the mixtures of HMPs.
arXiv Detail & Related papers (2024-06-01T12:24:23Z) - Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows [2.2530496464901106]
Continuous normalizing flows (CNFs) learn the probability path between a reference distribution and a target distribution by modeling the vector field generating said path using neural networks.
Recently, Lipman et al. (2022) introduced a simple and inexpensive method for training CNFs in generative modeling, termed flow matching (FM)
In this paper, we repurpose this method for probabilistic inference by incorporating Markovian sampling methods in evaluating the FM objective, and using the learned CNF to improve Monte Carlo sampling.
arXiv Detail & Related papers (2024-05-23T10:08:19Z) - Score-based Source Separation with Applications to Digital Communication
Signals [72.6570125649502]
We propose a new method for separating superimposed sources using diffusion-based generative models.
Motivated by applications in radio-frequency (RF) systems, we are interested in sources with underlying discrete nature.
Our method can be viewed as a multi-source extension to the recently proposed score distillation sampling scheme.
arXiv Detail & Related papers (2023-06-26T04:12:40Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
We study the problem of single-channel source separation (SCSS)
We focus on cyclostationary signals, which are particularly suitable in a variety of application domains.
We propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator.
arXiv Detail & Related papers (2022-08-22T14:04:56Z) - Autoregressive Hidden Markov Models with partial knowledge on latent
space applied to aero-engines prognostics [2.179313476241343]
This paper describes an Autoregressive Partially-hidden Markov model (ARPHMM) for fault detection and prognostics of equipments based on sensors' data.
We show how to apply this model to estimate the remaining useful life based on health indicators.
arXiv Detail & Related papers (2021-05-01T10:23:22Z) - Formal Verification of Stochastic Systems with ReLU Neural Network
Controllers [22.68044012584378]
We address the problem of formal safety verification for cyber-physical systems equipped with ReLU neural network (NN) controllers.
Our goal is to find the set of initial states from where, with a predetermined confidence, the system will not reach an unsafe configuration.
arXiv Detail & Related papers (2021-03-08T23:53:13Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) is a popular model to generate random graphs with community structure given an expected degree sequence.
Standard approach of community detection based on the DCSBM is to search for the model parameters that are the most likely to have produced the observed network data through maximum likelihood estimation (MLE)
We present mathematical programming formulations and exact solution methods that can provably find the model parameters and community assignments of maximum likelihood given an observed graph.
arXiv Detail & Related papers (2021-01-26T22:04:40Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.