Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation
- URL: http://arxiv.org/abs/2208.10325v1
- Date: Mon, 22 Aug 2022 14:04:56 GMT
- Title: Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation
- Authors: Gary C.F. Lee, Amir Weiss, Alejandro Lancho, Jennifer Tang, Yuheng Bu,
Yury Polyanskiy, Gregory W. Wornell
- Abstract summary: We study the problem of single-channel source separation (SCSS)
We focus on cyclostationary signals, which are particularly suitable in a variety of application domains.
We propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator.
- Score: 98.95383921866096
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We study the problem of single-channel source separation (SCSS), and focus on
cyclostationary signals, which are particularly suitable in a variety of
application domains. Unlike classical SCSS approaches, we consider a setting
where only examples of the sources are available rather than their models,
inspiring a data-driven approach. For source models with underlying
cyclostationary Gaussian constituents, we establish a lower bound on the
attainable mean squared error (MSE) for any separation method, model-based or
data-driven. Our analysis further reveals the operation for optimal separation
and the associated implementation challenges. As a computationally attractive
alternative, we propose a deep learning approach using a U-Net architecture,
which is competitive with the minimum MSE estimator. We demonstrate in
simulation that, with suitable domain-informed architectural choices, our U-Net
method can approach the optimal performance with substantially reduced
computational burden.
Related papers
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
We propose a domain-decomposition-based deep learning (DL) framework, named CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs)
The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers.
arXiv Detail & Related papers (2024-08-26T17:50:47Z) - Score-based Source Separation with Applications to Digital Communication
Signals [72.6570125649502]
We propose a new method for separating superimposed sources using diffusion-based generative models.
Motivated by applications in radio-frequency (RF) systems, we are interested in sources with underlying discrete nature.
Our method can be viewed as a multi-source extension to the recently proposed score distillation sampling scheme.
arXiv Detail & Related papers (2023-06-26T04:12:40Z) - Semi-Blind Source Separation with Learned Constraints [1.2891210250935146]
Blind source separation (BSS) algorithms are unsupervised methods for hyperspectral data analysis.
In this article, we investigate a semi-supervised source separation approach in which we combine a projected alternating least-square algorithm with a learning-based regularization scheme.
We show that this allows for an innovative BSS algorithm, with improved accuracy, which provides physically interpretable solutions.
arXiv Detail & Related papers (2022-09-27T17:58:23Z) - Direct Localization in Underwater Acoustics via Convolutional Neural
Networks: A Data-Driven Approach [31.399611901926583]
Direct localization (DLOC) methods generally outperform their indirect two-step counterparts.
Underwater acoustic DLOC methods require prior knowledge of the environment.
We propose what is to the best of our knowledge, the first data-driven DLOC method.
arXiv Detail & Related papers (2022-07-20T22:40:11Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Pretrained Cost Model for Distributed Constraint Optimization Problems [37.79733538931925]
Distributed Constraint Optimization Problems (DCOPs) are an important subclass of optimization problems.
We propose a novel directed acyclic graph schema representation for DCOPs and leverage the Graph Attention Networks (GATs) to embed graph representations.
Our model, GAT-PCM, is then pretrained with optimally labelled data in an offline manner, so as to boost a broad range of DCOP algorithms.
arXiv Detail & Related papers (2021-12-08T09:24:10Z) - A Prototype-Oriented Framework for Unsupervised Domain Adaptation [52.25537670028037]
We provide a memory and computation-efficient probabilistic framework to extract class prototypes and align the target features with them.
We demonstrate the general applicability of our method on a wide range of scenarios, including single-source, multi-source, class-imbalance, and source-private domain adaptation.
arXiv Detail & Related papers (2021-10-22T19:23:22Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.