FKAConv: Feature-Kernel Alignment for Point Cloud Convolution
- URL: http://arxiv.org/abs/2004.04462v3
- Date: Tue, 24 Nov 2020 10:32:36 GMT
- Title: FKAConv: Feature-Kernel Alignment for Point Cloud Convolution
- Authors: Alexandre Boulch, Gilles Puy, and Renaud Marlet
- Abstract summary: We provide a formulation to relate and analyze a number of point convolution methods.
We also propose our own convolution variant, that separates the estimation of geometry-less kernel weights.
We show competitive results on classification and semantic segmentation benchmarks.
- Score: 75.85619090748939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent state-of-the-art methods for point cloud processing are based on the
notion of point convolution, for which several approaches have been proposed.
In this paper, inspired by discrete convolution in image processing, we provide
a formulation to relate and analyze a number of point convolution methods. We
also propose our own convolution variant, that separates the estimation of
geometry-less kernel weights and their alignment to the spatial support of
features. Additionally, we define a point sampling strategy for convolution
that is both effective and fast. Finally, using our convolution and sampling
strategy, we show competitive results on classification and semantic
segmentation benchmarks while being time and memory efficient.
Related papers
- PU-EdgeFormer: Edge Transformer for Dense Prediction in Point Cloud
Upsampling [4.125187280299247]
We present a combined graph convolution and transformer for point cloud upsampling, denoted by PU-EdgeFormer.
We employ graph convolution using EdgeConv, which learns the local geometry and global structure of point cloud better than existing point-to-feature method.
arXiv Detail & Related papers (2023-05-02T01:42:47Z) - E2PN: Efficient SE(3)-Equivariant Point Network [12.520265159777255]
This paper proposes a convolution structure for learning SE(3)-equivariant features from 3D point clouds.
It can be viewed as an equivariant version of kernel point convolutions (KPConv), a widely used convolution form to process point cloud data.
arXiv Detail & Related papers (2022-06-11T02:15:46Z) - PU-EVA: An Edge Vector based Approximation Solution for Flexible-scale
Point Cloud Upsampling [4.418205951027186]
Upsampling sparse, noisy and nonuniform point clouds is a challenging task.
A novel design of Edge Vector based Approximation for Flexible-scale Point clouds Upsampling (PU-EVA) is proposed.
The EVA upsampling decouples the upsampling scales with network architecture, achieving the flexible upsampling rates in one-time training.
arXiv Detail & Related papers (2022-04-22T15:14:05Z) - Temporally-Consistent Surface Reconstruction using Metrically-Consistent
Atlases [131.50372468579067]
We propose a method for unsupervised reconstruction of a temporally-consistent sequence of surfaces from a sequence of time-evolving point clouds.
We represent the reconstructed surfaces as atlases computed by a neural network, which enables us to establish correspondences between frames.
Our approach outperforms state-of-the-art ones on several challenging datasets.
arXiv Detail & Related papers (2021-11-12T17:48:25Z) - Convolutional Hough Matching Networks for Robust and Efficient Visual
Correspondence [41.061667361696465]
We introduce a Hough transform perspective on convolutional matching and propose an effective geometric matching algorithm, dubbed Convolutional Hough Matching (CHM)
Our method sets a new state of the art on standard benchmarks for semantic visual correspondence, proving its strong robustness to challenging intra-class variations.
arXiv Detail & Related papers (2021-09-11T08:39:41Z) - Differentiable Convolution Search for Point Cloud Processing [114.66038862207118]
We propose a novel differential convolution search paradigm on point clouds.
It can work in a purely data-driven manner and thus is capable of auto-creating a group of suitable convolutions for geometric shape modeling.
We also propose a joint optimization framework for simultaneous search of internal convolution and external architecture, and introduce epsilon-greedy algorithm to alleviate the effect of discretization error.
arXiv Detail & Related papers (2021-08-29T14:42:03Z) - Adaptive Graph Convolution for Point Cloud Analysis [25.175406613705274]
We propose Adaptive Graph Convolution (AdaptConv) which generates adaptive kernels for points according to their dynamically learned features.
Our method outperforms state-of-the-art point cloud classification and segmentation approaches on several benchmark datasets.
arXiv Detail & Related papers (2021-08-18T08:38:52Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
We present PU-Flow, which incorporates normalizing flows and feature techniques to produce dense points uniformly distributed on the underlying surface.
Specifically, we formulate the upsampling process as point in a latent space, where the weights are adaptively learned from local geometric context.
We show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
arXiv Detail & Related papers (2021-07-13T07:45:48Z) - DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution [136.7261709896713]
We propose a data-driven approach that generates the appropriate convolution kernels to apply in response to the nature of the instances.
The proposed method achieves promising results on both ScanetNetV2 and S3DIS.
It also improves inference speed by more than 25% over the current state-of-the-art.
arXiv Detail & Related papers (2020-11-26T14:56:57Z) - Permutation Matters: Anisotropic Convolutional Layer for Learning on
Point Clouds [145.79324955896845]
We propose a permutable anisotropic convolutional operation (PAI-Conv) that calculates soft-permutation matrices for each point.
Experiments on point clouds demonstrate that PAI-Conv produces competitive results in classification and semantic segmentation tasks.
arXiv Detail & Related papers (2020-05-27T02:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.