DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution
- URL: http://arxiv.org/abs/2011.13328v2
- Date: Sat, 6 Mar 2021 00:41:22 GMT
- Title: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution
- Authors: Tong He, Chunhua Shen, Anton van den Hengel
- Abstract summary: We propose a data-driven approach that generates the appropriate convolution kernels to apply in response to the nature of the instances.
The proposed method achieves promising results on both ScanetNetV2 and S3DIS.
It also improves inference speed by more than 25% over the current state-of-the-art.
- Score: 136.7261709896713
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Previous top-performing approaches for point cloud instance segmentation
involve a bottom-up strategy, which often includes inefficient operations or
complex pipelines, such as grouping over-segmented components, introducing
additional steps for refining, or designing complicated loss functions. The
inevitable variation in the instance scales can lead bottom-up methods to
become particularly sensitive to hyper-parameter values. To this end, we
propose instead a dynamic, proposal-free, data-driven approach that generates
the appropriate convolution kernels to apply in response to the nature of the
instances. To make the kernels discriminative, we explore a large context by
gathering homogeneous points that share identical semantic categories and have
close votes for the geometric centroids. Instances are then decoded by several
simple convolutional layers. Due to the limited receptive field introduced by
the sparse convolution, a small light-weight transformer is also devised to
capture the long-range dependencies and high-level interactions among point
samples. The proposed method achieves promising results on both ScanetNetV2 and
S3DIS, and this performance is robust to the particular hyper-parameter values
chosen. It also improves inference speed by more than 25% over the current
state-of-the-art. Code is available at: https://git.io/DyCo3D
Related papers
- ISBNet: a 3D Point Cloud Instance Segmentation Network with
Instance-aware Sampling and Box-aware Dynamic Convolution [14.88505076974645]
ISBNet is a novel method that represents instances as kernels and decodes instance masks via dynamic convolution.
We set new state-of-the-art results on ScanNetV2 (55.9), S3DIS (60.8), S3LS3D (49.2) in terms of AP and retains fast inference time (237ms per scene on ScanNetV2.
arXiv Detail & Related papers (2023-03-01T06:06:28Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - E2PN: Efficient SE(3)-Equivariant Point Network [12.520265159777255]
This paper proposes a convolution structure for learning SE(3)-equivariant features from 3D point clouds.
It can be viewed as an equivariant version of kernel point convolutions (KPConv), a widely used convolution form to process point cloud data.
arXiv Detail & Related papers (2022-06-11T02:15:46Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - Stratified Transformer for 3D Point Cloud Segmentation [89.9698499437732]
Stratified Transformer is able to capture long-range contexts and demonstrates strong generalization ability and high performance.
To combat the challenges posed by irregular point arrangements, we propose first-layer point embedding to aggregate local information.
Experiments demonstrate the effectiveness and superiority of our method on S3DIS, ScanNetv2 and ShapeNetPart datasets.
arXiv Detail & Related papers (2022-03-28T05:35:16Z) - Lightweight Convolutional Neural Networks By Hypercomplex
Parameterization [10.420215908252425]
We define the parameterization of hypercomplex convolutional layers to develop lightweight and efficient large-scale convolutional models.
Our method grasps the convolution rules and the filters organization directly from data.
We demonstrate the versatility of this approach to multiple domains of application by performing experiments on various image datasets and audio datasets.
arXiv Detail & Related papers (2021-10-08T14:57:19Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution.
We gather homogeneous points that have identical semantic categories and close votes for the geometric centroids.
The proposed approach is proposal-free, and instead exploits a convolution process that adapts to the spatial and semantic characteristics of each instance.
arXiv Detail & Related papers (2021-07-18T09:05:16Z) - Fine-Grained Dynamic Head for Object Detection [68.70628757217939]
We propose a fine-grained dynamic head to conditionally select a pixel-level combination of FPN features from different scales for each instance.
Experiments demonstrate the effectiveness and efficiency of the proposed method on several state-of-the-art detection benchmarks.
arXiv Detail & Related papers (2020-12-07T08:16:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.