The nonlinear semiclassical dynamics of the unbalanced, open Dicke model
- URL: http://arxiv.org/abs/2004.04486v1
- Date: Thu, 9 Apr 2020 11:13:20 GMT
- Title: The nonlinear semiclassical dynamics of the unbalanced, open Dicke model
- Authors: Kevin Stitely, Andrus Giraldo, Bernd Krauskopf, and Scott Parkins
- Abstract summary: The Dicke model exhibits a quantum phase transition to a state in which the atoms collectively emit light into the cavity mode, known as superradiance.
We study this system in the semiclassical (mean field) limit, neglecting the role of quantum fluctuations.
We find that a flip of the collective spin can result in the sudden emergence of chaotic dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years there have been significant advances in the study of
many-body interactions between atoms and light confined to optical cavities.
One model which has received widespread attention of late is the Dicke model,
which under certain conditions exhibits a quantum phase transition to a state
in which the atoms collectively emit light into the cavity mode, known as
superradiance. We consider a generalization of this model that features
independently controllable strengths of the co- and counter-rotating terms of
the interaction Hamiltonian. We study this system in the semiclassical (mean
field) limit, i.e., neglecting the role of quantum fluctuations. Under this
approximation, the model is described by a set of nonlinear differential
equations, which determine the system's semiclassical evolution. By taking a
dynamical systems approach, we perform a comprehensive analysis of these
equations to reveal an abundance of novel and complex dynamics. Examples of the
novel phenomena that we observe are the emergence of superradiant oscillations
arising due to Hopf bifurcations, and the appearance of a pair of chaotic
attractors arising from period-doubling cascades, followed by their collision
to form a single, larger chaotic attractor via a sequence of infinitely many
homoclinic bifurcations. Moreover, we find that a flip of the collective spin
can result in the sudden emergence of chaotic dynamics. Overall, we provide a
comprehensive roadmap of the possible dynamics that arise in the unbalanced,
open Dicke model in the form of a phase diagram in the plane of the two
interaction strengths. Hence, we lay out the foundations to make further
advances in the study of the fingerprint of semiclassical chaos when
considering the master equation of the unbalanced Dicke model, that is, the
possibility of studying a manifestation of quantum chaos in a specific,
experimentally realizable system.
Related papers
- Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - The Closed and Open Unbalanced Dicke Trimer Model: Critical Properties
and Nonlinear Semiclassical Dynamics [5.824077816472029]
We study a generalization of the recently introduced Dicke trimer model.
In the extreme unbalanced limit, the symmetry of the Tavis-Cummings model is restored.
We observe the emergence of nonequilibrium phases characterized by trivial and non-trivial dynamical signatures.
arXiv Detail & Related papers (2023-03-21T11:23:18Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Engineering random spin models with atoms in a high-finesse cavity [8.787025970442755]
We realise an all-to-all interacting, disordered spin system by subjecting an atomic cloud in a cavity to a controllable light shift.
By probing the low-energy excitations of the system, we explore the competition of interactions with disorder across a broad parameter range.
Results present significant steps towards freely programmable cavity-mediated interactions for the design of arbitrary spin Hamiltonians.
arXiv Detail & Related papers (2022-08-19T16:13:58Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Particle mixing and the emergence of classicality: A
spontaneous-collapse-model view [0.0]
We show that spontaneous collapse can induce the decay dynamics in both quantum state and master equations.
We show that the decay property of a flavor-oscillating system is intimately connected to the time (a)symmetry of the noise field underlying the collapse mechanism.
arXiv Detail & Related papers (2020-08-25T16:07:59Z) - Bridging entanglement dynamics and chaos in semiclassical systems [0.0]
We propose a unifying framework which connects the bipartite and multipartite entanglement growth to the quantifiers of classical and quantum chaos.
In the semiclassical regime, the dynamics of the von Neumann entanglement entropy, the spin squeezing, the quantum Fisher information and the out-of-time-order square commutator are governed by the divergence of nearby phase-space trajectories.
arXiv Detail & Related papers (2020-05-07T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.